

主	管	单	位	中华人民共和国生态环境部
主	办	单	位	生态环境部核与辐射安全中心
出	版	单	位	《核安全》编辑部
主			编	周启甫
执	行畐	川主	编	王晓峰
编	辑音	阝主	任	于大鹏
地			址	北京市海淀区红联南村54号
邮			编	100082
信			箱	北京8088信箱
编	弃	睅	部	010-82205563 82205716
				010-82203444 82203547
广	싙	L,	部	010-82205645
发	行	亍	部	010-82205713
传			真	010-82203590
官			网	http://haqy.cbpt.cnki.net(在线投稿)
邮			箱	heanquanzazhi@263.net.cn
广-	告发	布登	记	京海工商广登字20180003号
国	际标	准刊	号	ISSN 1672-5360
国	内统	一刊	号	CN11-5145/TL
海	外	发	行	中国国际图书贸易集团有限公司
发	行	代	号	BM9557
印			刷	北京一二零一印刷有限公司
国	内	定	价	80.00元

版权所有 未经许可 不可转载

如发现印刷、装帧等刊物质量问题请与发行部联系。 声明:本刊与网络数据库合作,以数字化方式传播本刊 全文。作者著作权使用费与本刊稿酬一次性给付,不再 另行发放。作者如不同意将文章入编,投稿敬请说明。 2024年第1期 总第96期双月刊 公开发行2024年2月29日出版

《核安全》杂志 官方微博

《核安全》编委会

— 编委会主任 ———

王大中 清华大学·科学院院士·副主席

———编委会副主任———

于俊崇 中国核动力研究设计院・工程院院士

叶奇蓁 秦山核电集团筹备组 · 工程院院士

孙玉发 中国核动力研究设计院・工程院院士

吴祖泽 军事医学科学院・科学院院士 **陈佳洱** 北京大学・科学院院士 ٦

林忠钦 上海交通大学·工程院院士

郑建超 中国广核集团有限公司・工程院院士

魏炳波 西北工业大学·科学院院士

(按姓氏笔画排序)

	•	编委会委员	•	
于涛	王为	田文喜	史克亮	刘非
张庆贤	陈义学	周涛	顾汉洋	黄小桁
蒋诗平	程琦福	谭思超	叶延程	

	日、物	栫	亥安全	
		2024	年・第-	-期
٠	辐射安全			
1	海南典型温泉设施内空气中氡及氡子体平衡因子测量研究	鑫,	谢东海,	等
٠	核电厂实践			
8	核电工程防造假管理体系建立与优化	涛,	王 硕,	等
٠	经验反馈			
14	高温气冷堆核电厂主蒸汽管道焊接见证件不合格问题研究和经验反馈	…牟	童,陈	威
٠	研究与探讨			
20	商品级物项转化单位质量保证要求策划研究	劲,	王建军,	等
26	6 校企合作背景下核电构筑物健康监测专硕人才培养的探索与实践贺 敏,王	雨竹,	侯钢领,	等
33	3 燃料组件堵流工况下铅铋 - 氩气两相流的传热压降特性分析夏 凡,刘	书勇,	李桃生,	等
48	3 轴线倾斜条件下核电站推力轴承润滑特性分析徐 熙, 潘	伟龙,	谢江红,	等
56	β 衰变型自给能堆芯中子探测器灵敏度 K 因子研究		于移	家驷
81	AP系列压水堆核电厂冷态性能试验风险识别与管理	,何先	华,张德	憲亮
88	3 耐事故燃料锆合金包壳 MAX 相材料 Cr ₂ AIC 涂层的研究进展	,季晨	龙,尹涵	払下
95	; 立式 U 形管自然循环蒸汽发生器循环倍率近似计算方法研究 黄 俊,应:	秉斌,	巢孟科,	等

◆ 参考文献

103 《核安全》近年可被引文献目录

(执行编辑:许龙飞)

NUCLEAR SAFETY

2024 No.1

CONTENTS

- 1 Investigation on the Equilibrium Factor of Radon and Its Progeny in Typical Hot Spring Facilities in Hainan (Zhang Linwei, Wang Xin, Xie Donghai, Tang Yu, Wang Ye, Fu Yifan)
- 8 Establishment and Optimization of Anti-counterfeiting Management System for Engineering Project of Nuclear Power Plants

(Shi Jianhua, Ji Tao, Wang Shuo, Chen Bo)

- 14 Supervision Experience Feedback and Research of Main Steam Pipe Welding Witness Unqualified in HTR-PM (Mou Tong, Chen Wei)
- 20 Research on the Planning of Quality Assurance Requirements for Commercial Grade Dedication Units (Wang Meiying, Zhang Jin, Wang Jianjun, Chen Fangqiang, Zhao Xudong)
- 26 Exploration and Practice of Professional Master's Talent Cultivation in Health Monitoring for Nuclear Power Plant Structures under the Background of University-Industry Cooperation (He Min, Wang Yuzhu, Hou Gangling, Chen Yueyao)

33 Flow Blockage Phenomenon of LBE-argon Two Phase Flow in a Wire-wrapped Fuel Assembly

(Xia Fan, Liu Shuyong, Li Taosheng, Mei Huaping, Wang Zhen, Zhao Jiyun)

- **48** Analysis of Lubrication Characteristics of Thrust Bearings with Inclined Axis in Nuclear Power Plant (Xu Xi, Pan Weilong, Xie Jianghong, He Shaohua, Fan Xueqing, Cai Liang)
- 56 Study on Sensitivity K Factor of Self-powered Detector with β Decay (Yu Jiasi)
- 81 Risk Identification and Management of AP Series Pressurized Water Reactor Nuclear Power Plant Cold Performance Test

(Zhang Zhenqiang, He Xianhua, Zhang Deliang)

- Recent Progress of Cr₂AlC Coating of Max Phase Material for Accident-tolerant Fuel Zirconium Alloy Cladding (Qin Ziming, Ji Chenlong, Yin Hongbu)
- 95 Study on Approximate Calculation Method of Circulation Ratio for Vertical U-tube Natural Circulation Steam Generator (Huang Jun, Ying Bingbin, Chao Mengke, Li Jinghuai)

核安全

第23卷第1期

2024 年 2 月

NUCLEAR SAFETY

张林伟,王鑫,谢东海,等. 海南典型温泉设施内空气中氡及氡子体平衡因子测量研究[J]. 核安全,2024,23(1):1-7. Zhang Linwei,Wang Xin,Xie Donghai,et al. Investigation on the Equilibrium Factor of Radon and Its Progeny in Typical Hot Spring Facilities in Hainan [J]. Nuclear Safety,2024,23(1):1-7.

海南典型温泉设施内空气中氡及氡子体平衡因子测量研究

张林伟,王鑫*,谢东海,唐煜,王叶,符义凡

(海南省辐射环境监测站,海口 571126)

摘要:平衡因子是氡子体所致剂量估算和评价的重要参数。为了解海南省温泉设施内不同 空间空气中氡及氡子体平衡因子的水平与分布范围,本文采用连续测量方法对不同地域典 型温泉设施内不同空间氡及氡子体浓度、室内温泉泡池加水过程氡及氡子体浓度进行现场 测量,计算并分析平衡因子的变化。测量结果表明:平衡因子在较大范围内分布,通风状 况是影响平衡因子的重要因素,通风越好,平衡因子越小;室内引入温泉水后,空气中氡 及氡子体浓度升高,平衡因子略有上升。

关键词:温泉设施;氡及氡子体;平衡因子

中图分类号: X591 文章标志码: A 文章编号: 1672-5360(2024)01-0001-07

自然界中,氡(²²²Rn)通过广泛存在于岩石 土壤等介质中的镭(²²⁶Ra)衰变产生。在所有天 然辐射对公众产生的辐射剂量中,来自氮及其 短寿命子体辐射剂量贡献占总辐射剂量的 50% 左右^[1],世界卫生组织(WHO)将氮及其子体列 为19种致癌物质之一,并明确指出其辐射照射 是诱发肺癌的第二大因素^[2]。氮不仅存在于空 气中,还会溶于水体,随水体的流动而迁移,并 从水体中析出进入空气中。地下水中氡主要来 自岩石土壤以及水体中镭的衰变[3],通常地下 水体中的氡浓度高于地表水体。温泉等地热水 是地下水体的组成部分,当地热温泉水由地下 被抽送到地面温泉泡池时,溶解在温泉水中的 氡便会释放到空气中,增大空气中氡及氡子体 的浓度^[3,5]。因此,从公众辐射健康的角度考虑, 在利用温泉等地热水的场所设施内,与氡暴露

相关的潜在危险值得关注^[3,5,6]。

海南省地热水资源储存量十分丰富,地热 水开发利用为当地经济和社会发展做出了重要 贡献。全省温泉出露点共35个,基本环岛分 布^[4]。有些酒店为了方便旅客,不仅在室外建 有温泉泡池,而且在客房内建有小型温泉泡池。 室内引入的大量温泉水,是客房内一个新的氡 源,室内氡及氡子体浓度水平产生的影响应引 起我们的关注。在氡及氡子体所致人类受到的 天然辐射剂量中,氡子体的贡献剂量占绝大多 数^[6]。平衡因子是氡子体剂量估算和评价是否 精确的重要参数,目前环境氡子体所致剂量大 都采用环境氡浓度和推荐的氡及氡子体平衡因 子来近似估算^[1]。因此,针对海南典型温泉设 施,开展空气中氡及氡子体平衡因子测量研究, 不仅可为海南典型温泉设施内空气中氡子体致

辐射安全

收稿日期: 2023-11-20 修回日期: 2023-12-19

基金项目:海南省自然科学基金项目,项目编号:421MS0815

作者简介:张林伟(1984一),男,工程师,硕士,现主要从事核与辐射监测研究工作

^{*} 通讯作者: 王鑫, E-maill: hnwangx@126.com

公众剂量估算和评价提供准确可靠的数据,而 且有助于认识和研究氡及氡子体平衡因子变化 规律和影响因素,具有重要的实际意义。

1 测量方法和设备

1.1 测量方法

典型温泉设施内空气中氡及氡子体测量方 法参照《环境空气中氡的测量方法》(HJ 1212— 2021)。测量高度为 1.2~1.5 m,接近人体呼吸 带高度。氡及氡子体浓度测量采用能够自动测 量和记录数据的氡及氡子体连续测量仪器。通 过连续测量方法在同一地点进行监测,会得到 详细的氡及氡子体浓度数据,有助于准确得到 平衡因子。测量点位远离门窗、墙壁等空气状 态不稳定的地方。为模拟旅客在温泉酒店活 动情况,测量期间客房关闭门窗,空调正常运 行,客房测量点位选在房间中央;酒店大厅测 量点位选在人员停留时间较长的旅客休息区; 室外泡池测量点选在距泡池边 3 m 的旅客休 息区。

1.2 测量仪器

测量采用氡气测量仪、氡子体测量仪以及 气体 - 子体一体机三种类型的仪器,测量时所 有仪器的测量周期均设置为 60 min,采样流量 设置为 0.5 ml/min。仪器原理如下:

(1)便携式 NRM-P01 型测氡仪,由赛 睿环 仪(北京)科技有限公司生产,采用高压静电收集

和半导体能谱测量,可甄别²²²Rn 和²²⁰Rn,通过一体化膜式干燥系统实现宽湿度范围²²²Rn 和²²⁰Rn 气体稳定测量^[7]。仪器系统结构如图 1 所示。

图 1 NRM-P01 型测氡仪系统结构 Fig.1 Structure diagram of NRM-P01 radon meter system

(2) NPRM-S01 氡及氡子体测量仪,由赛睿 环仪(北京)科技有限公司生产。氡子体测量 采用单片滤膜固定采样设计,恒流步进走纸式 采样,设置了多种测量模式,可实现单个 RaA、 RaB、RaC 和 EEC 的同步测量,为 PIPS 半导体 探测;氡浓度测量采用静电采集,Si-PIN 探测 器探测,能快速响应环境中²²²Rn/²²⁰Rn 气体、 ²²²Rn/²²⁰Rn 子体活度浓度的变化^[7]。仪器系统 结构如图 2 所示。

(3) RPM-FF01 氡子体测量仪,由赛睿环仪 (北京)科技有限公司生产,采用固定滤膜采样, 自稳定恒流采样,PIPS 探测器多道能谱测量,

Fig.2 NPRM-S01 Radon and radon progeny measuring instrument system structure diagram

可以实现单个氡子体(RaA、RaB、RaC)测量^[7]。 仪器系统结构如图 3 所示。

图 3 RPM-FF01 氡子体测量仪系统结构 Fig.3 RPM-FF01 Radon progeny measuring instrument system structure diagram

1.3 测量数据质量保证措施

本调查严格按照本单位质量管理体系开展 氡及氡子体浓度测量,测量过程中规范操作;测 量仪器均在我国计量部门进行了刻度和校准, 并有专人负责维护,定期进行核查;测量期间, 测量仪器先后两次在北京大学辐射防护与环境 保护实验室氡室中进行稳定性测量。

1.4 平衡因子的计算

现行国标《电离辐射防护与辐射源安全基本标准》(GB 18871—2002)对平衡因子f的定义为:平衡当量氡浓度与空气中母体核素氡放射性浓度的比值^[8]。根据这一定义,本调查需要在同一地点,同时测量氡活度浓度和表征氡子体浓度的平衡当量氡浓度(Equilibrium Equivalent Concentration of Radon, EEC)。平衡因子的计算方法见式(1)。

$$f = \frac{EEC}{C_{\rm Rn}} \not\equiv EEC = C_{\rm Rn} \times f \tag{1}$$

式中,*EEC* 为平衡当量氡浓度;*C*_{Rn} 为氡的 活度浓度。

2 测量方案

2.1 测量场所选择

本调查根据温泉设施地理位置、规模、利 用水量、入住人数和入场调查可行性等因素, 经过现场查勘,在海南岛东部、西部、南部和中 部选取有代表性的典型大型温泉酒店各1处 开展现场测量,温泉酒店客房是以水泥加砌砖 为主的框架结构房屋,长约7m,宽约5m,高 约3.3m。温泉酒店分布在儋州、琼海、保亭、 三亚。

儋州酒店所处温泉带长 6 km,宽 500 m, 在 2 km²范围内,有大小自然泉眼十几个,日自 流量达到 7000 t 以上,温泉水温 41 ℃ ~93 ℃, 水质含有氯、偏硅酸等微量元素;琼海酒店所 处温泉热矿水日流开采量 5000 t 以上,温度为 52 ℃ ~74 ℃,水质含有氯、硫、偏硅酸等微量元 素;保亭酒店所用温泉水温度为 45 ℃ ~95 ℃, 日流开采量 3000 t 以上,水质属于硅酸重碳 钠型氟硅理疗热矿水;三亚酒店温泉水温度为 45 ℃ ~90 ℃,日流开采量 3000 t 以上,水质含 有氯、偏硅酸等微量元素,属于氟硅型理疗热 矿水。

2.2 测量点位布设及内容

为充分掌握海南典型温泉设施内空气中氡 及氡子体平衡因子变化规律和影响因素,洗择 有代表性点位进行调查测量。首先,本研究针 对温泉酒店不同通风条件的密封性空间、半开 放空间和全开放空间,分别选择酒店近于地基 土壤的标准客房、酒店大厅和酒店温泉室外泡 池3个公众停留时间较长的点位作为三类空间 的代表进行连续测量。其次,本研究针对温泉 水利用引起的氡及氡子体浓度的变化,洗择一 处典型温泉酒店客房温泉水利用过程分三个阶 段进行测量。第一阶段对利用温泉水前客房的 氡及氡子体浓度进行测量,了解客房原有氡及 氡子体浓度;第二阶段为利用温泉水后(大约 3 h^[1]) 氮及氮子体基本达到放射性平衡时, 对 氡及氡子体浓度进行测量;第三阶段为氡及氡 子体达到放射性平衡后的9h.对氡及氡子体浓 度进行测量,了解氡子体迁移后客房内氡及氡 子体浓度及平衡因子变化规律。

2.3 测量时间

现场测量时间为 2023 年 4 月 17 日至 4 月 30 日、2023 年 11 月 26 日至 11 月 28 日。

3 结果与讨论

3.1 温泉设施室内外氡及氡子体浓度

按照不同的空间类型,本研究对空气中氡 及氡子体浓度进行测量,温泉设施密封空间空 气中氡浓度、氡子体浓度及平衡因子测量数据 见表1,温泉设施半开放空间空气中氡浓度、氡 子体浓度及平衡因子见表2,温泉设施开放空间 空气中氡浓度、氡子体浓度及平衡因子见表3。 由表 1~表 3 监测结果得出:在温泉设施 中,密封空间酒店客房内平衡因子平均值为0.5, 半开放空间酒店大厅平衡因子平均值为0.3, 全开放空间酒店室外泡池平衡因子平均值为 0.28。从数据可以看出,通风情况越好,平衡 因子越小,这与吴昊等人在内陆研究的结果相 似^[9,10]。同时还可以看到,无论室内还是室外,无 论通风条件如何,平衡因子的变化范围都是较 大的。

表 1 温泉设施密封空间空气中氡浓度、氡子体浓度及平衡因子

Table 1 Radon concentration, radon daughter concentration and balance factor in the air of sealed space in hot spring facilities

	奏	〔浓度 / (Bq/m ³)	氡子	亚盔国了	
地点	平均值	测量范围	平均值	测量范围	平側囚丁
儋州酒店客房	25.6 ± 15.4	$12.7 \pm 2.9 \sim 62.8 \pm 7.3^{(a)}$	10.8 ± 5.6	$3.4 \pm 0.4 \sim 22.5 \pm 1.6^{(c)}$	0.5 ± 0.2
琼海酒店客房	30.2 ± 6.2	$18.0 \pm 3.9 38.8 \pm 6.0^{(b)}$	18.0 ± 6.2	$9.3 \pm 0.7 {\sim} 25.5 \pm 1.8^{(b)}$	0.6 ± 0.2
保亭酒店客房	72.5 ± 19.2	$39.3 \pm 8.5 {\sim} 99.2 \pm 10.6^{(b)}$	22.1 ± 5.6	$13.7 \pm 1.0 {\sim} 34.2 \pm 2.3^{(b)}$	0.4 ± 0.3
三亚酒店客房	42.7 ± 20.5	$13.4 \pm 3.3 \sim 76.5 \pm 8.9^{(b)}$	21.5 ± 11.9	$5.7 \pm 0.5 {\sim} 35.9 \pm 2.5^{(\mathrm{b})}$	0.5 ± 0.1
平均值		42.8 ± 21.1		18.1 ± 5.2	0.5 ± 0.1

注:表1中(a)数据由便携式NRM-P01型测氡仪测得,(b)数据由NPRM-S01氡及氡子体测量仪测得,(c)数据由RPM-FF01氡子体测量仪测得。

表 2 温泉设施半开放空间空气中氡浓度、氡子体浓度及平衡因子

Table 2 Radon concentration, radon daughter concentration and balance factor in the air of semi-open space in hot spring facilities

·바 ·닫	复	〔浓度 / (Bq/m ³)	氡子	氡子体浓度 / (Bq/m³)		
地点	平均值	测量范围	平均值	测量范围	- 干悞凶亅	
儋州酒店大厅	17.5 ± 4.4	$12.3 \pm 3.2 \sim 27.5 \pm 7.0$	6.0 ± 2.3	$3.4 \pm 0.3 \sim 10.4 \pm 0.8$	0.3 ± 0.1	
琼海酒店大厅	18.1 ± 9.6	$6.5 \pm 2.3 \sim 32.2 \pm 7.6$	4.9 ± 1.0	$3.1 \pm 0.3 \sim 6.9 \pm 0.6$	0.3 ± 0.1	
保亭酒店大厅	23.1 ± 10.2	8.1 ± 2.6~39.7 ± 6.1	6.9 ± 4.5	$1.9 \pm 0.2 \sim 16.8 \pm 1.3$	0.3 ± 0.1	
三亚酒店大厅	12.3 ± 3.8	$8.0 \pm 2.6 \sim 16.8 \pm 5.4$	3.3 ± 1.9	$1.8 \pm 0.2 \sim 6.0 \pm 0.5$	0.3 ± 0.2	
平均值		17.8 ± 4.4		5.3 ± 1.6	0.3 ± 0.1	

注:表 2 中数据均由 NPRM-S01 氡及氡子体测量仪测得。

表 3 温泉设施开放空间空气中氡浓度、氡子体浓度及平衡因子

Table 3 The concentration of radon in the air, the concentration of radon progeny and the balance factor in the openspace of the hot spring

	氡浓度 / (Bq/m ³)		氡子	亚海田乙	
地点	平均值	测量范围	平均值	测量范围	一 干隈四]
儋州酒店室外泡池	20.4 ± 6.0	$13.9 \pm 3.5 \sim 29.5 \pm 5.2$	9.2 ± 2.6	$6.5 \pm 0.5 \sim 12.0 \pm 0.9$	0.5 ± 0.3
琼海酒店室外泡池	12.5 ± 3.2	$8.1 \pm 2.6 \sim 13.5 \pm 4.8$	3.2 ± 0.6	$2.6 \pm 0.3 \sim 4.1 \pm 0.4$	0.3 ± 0.1
保亭酒店室外泡池	16.2 ± 2.7	$12.4 \pm 2.9 \sim 19.8 \pm 4.9$	2.8 ± 0.9	$2.2 \pm 0.3 \sim 4.6 \pm 0.4$	0.2 ± 0.1
三亚酒店室外泡池	13.2 ± 5.7	$8.0 \pm 0.3 \sim 28.5 \pm 7.1$	1.7 ± 1.4	$0.9 \pm 0.2 {\sim} 5.57 \pm 0.5$	0.1 ± 0.1
平均值		15.6 ± 3.6		4.3 ± 3.4	0.28 ± 0.2

注:表 3 中数据均由 NPRM-S01 氡及氡子体测量仪测得。

UNSCEAE 2000年报告推荐平衡因子室内为 0.4,室外为 0.6^[11]。与 UNSCEAE 2000 年报告推荐值室内 0.4 相比,酒店客房相差 0.1,偏差 25%,酒店大厅相差 0.1,偏差 25%,完全开放空间酒店室外泡池平衡因子为 0.28,与 UNSCEAE 2000 年报告推荐值室外 0.6 相差 0.32,偏差 53%,通过数据比较可以看出,密封空间和半开放空间与 UNSCEAE 2000 年报告室内推荐值相差较小,而开放空间与 UNSCEAE 2000 年报告室外推荐值相差较大,偏差超过 50%。因此,如果没有对氡子体进行测量,评价时仅采用推荐的平衡因子进行剂量估算,则有可能导致较大的误差。

3.2 酒店客房内泡温泉时氡及氡子体平衡因子的变化

为了解室内温泉泡池满水情况下平衡因 子的变化,在酒店标准客房内采用 NPRM-S01 氡及氡子体测量仪开展 20 h 连续测量,读取小 时平均值,室内温泉泡池加水时间为 2023 年 4 月 24 日 20 时 40 分至 21 时 0 分,加水后,泡池 处于满水状况直到测量结束。测量结果如图 4 所示。

图 4 泡浴期间客房内氡及氡子体浓度连续测量结果 Fig.4 Continuous measurement of radon and radon progeny concentrations in the guest room during bath

如图4所示,把客房泡池放水前后分为三 个阶段,第一阶段在泡池放水前7h,第二阶段 在引入温泉水后的3h,第三阶段在氡及氡子体 浓度回落的9h。从图4可以看出,第一阶段 氡及氡子体浓度较低,氡及氡子体浓度平均值 分别为18.5±3.1 Bq/m³和8.4±3.0 Bq/m³,在 我国室内氡浓度本底水平分布范围之内:第二 阶段在温泉泡池加水后,氡浓度明显升高,氡 子体浓度紧随氡浓度升高而升高,达到峰值后 缓慢降低回落;氡及氡子体浓度平均值分别为 68.0 ± 10.0 Bq/m³ 和 35.2 ± 4.9 Bq/m³:该阶段 峰值表明温泉水是影响酒店客房室内氡及氡子 体浓度水平的重要因素,温泉水进入泡池后,由 于水的扰动,水中氡释放到空气中,空气中氡及 氡子体浓度升高达到峰值,此后,由于在测量过 程中客房并不是完全封闭的,门口、窗户等缝隙 的通风,使少量氡及氡子体迁移到室外,室内浓 度降低且趋于平稳,第三阶段氡及氡子体浓度 趋于稳态平衡,氡及氡子体浓度平均值分别为 53.1±6.2 Bq/m³和27.2±7.0 Bq/m³,这一阶段 氡及氡子体浓度明显大干第一阶段,这是因为 门窗缝隙等通风效果不佳,氡及氡子体迁移较 慢。这也说明了通风增强空气的流动是降低室 内氡浓度水平的重要方式。

第一阶段氡及氡子体平衡因子平均值为 0.46, 第二阶段氡及氡子体平衡因子平均值为 0.52, 第三阶段氡及氡子体平衡因子为 0.52。与 UNSCEAE 2000 年报告推荐值相比,第一阶段 平衡因子与 UNSCEAE 2000 年报告推荐值室 内 0.4 相差 0.06,这一阶段氡及氡子体在室内空 间达到了放射性平衡,平衡因子与 UNSCEAE 2000年报告推荐值接近;第二阶段和第三阶段 的平衡因子相同,都是 0.52,与 UNSCEAE 2000 年报告推荐平衡因子室内 0.4 相差 0.12, 第二 阶段,在温泉泡池注水过程中,引入新的氡源, 水中氡进入客房空气中,原有放射性平衡被破 坏,氡浓度升高较为明显,氡子体浓度升高幅度 小于氡浓度,所以平衡因子数值增大;在第三阶 段,经过第二阶段的3h,空间内氡及氡子体延 续了第二阶段氡及氡子体放射性平衡,平衡因 子并未恢复到第一阶段的水平,而是与第二阶 段处于同一水平。

4 结论

在氡相关测量和剂量评价实际工作中,鉴 于仪器成本和技术局限,通常仅测量氡浓度,再 通过与推荐的平衡因子的乘积,求算平衡当量 氡浓度,再借助剂量转换系数和暴露时间,最终 得到氡暴露有效剂量^[9,10,12]。可以看出平衡因 子是氡剂量评价过程中的核心参数。测量调查 独特环境中平衡因子数值的大小,变化范围以 及影响因素,对准确评价剂量有重要意义。

本研究对海南省不同区域典型温泉酒店 空气中氡及氡子体浓度水平、波动范围进行了 现场测量调查,以测量所得的数据为基础,分析 在不同通风条件下氡及氡子体平衡因子变化情 况,得出以下主要结论:

(1)在海南温泉设施内,通风状况会直接影 响氡及氡子体平衡因子的变化,通风越好,平衡 因子越小。

(2) 氡及氡子体平衡因子与 UNSCEAE 2000 年报告推荐值相比, 会有一定的差距, 室内差距 较小, 偏差为 25%, 室外差距较大, 偏差为 53%。 因此, 建议在温泉设施氡子体所致有效剂量估 算中应该利用监测得到的氡浓度和平衡因子。

(3)在密封空间内引入新的温泉水,会导致 空间氡及氡子体放射性平衡短暂破坏,约3h 时后建立新的放射性平衡,相比引入新的氡源 前,氡浓度比氡子体浓度升高更明显,平衡因子 增大。 (4) 温泉酒店室内泡池引入温泉水,会导致 酒店客房空气中的氡及氡子体浓度升高明显, 本着辐射防护最优化的原则,应采取措施加快 客房氡及氡子体的迁移,建议旅客在使用酒店 房间温泉泡浴时,做好开窗通风,以降低客房空 气中氡及氡子体水平。

参考文献

- [1] 潘自强. 电离辐射环境监测及评价 [M]. 北京: 原子能出版 社, 2007.
- [2] World Health Organization. WHO handbook on indoor radon: a public health perspective [M]. Switzerland: WHO, 2009.
- [3] 李婷. 地下热水中天然放射性镭-226 和氡-222 测定及分析 评价[M]. 北京: 中国地质大学, 2013.
- [4]海南地热资源开发利用与水资源保护调研报告.[R].中国国
 土资源经济 2008,(08): 25-27+47.
- [5]赵楚宁.氡泉酒店室内空气质量评价研究[M].杭州:浙江 大学,2018.
- [6] 张磊, 李宏钊, 郭秋菊.室内氡子体行为模型研究[J]. 辐射防护 2010, (30): 24-35.
- [7] www.sairatec.com.
- [8] 中华人民共和国国家质量监督检验检疫总局.GB 18871—2002 电离辐射防护与辐射源安全基本标准[S].北京:中国标准出版社,2002.
- [9] 吴昊,肖德涛,李志强,等.某些场所氡及其子体平衡因子 的测量[J].辐射防护2016,36(5):291-316.
- [10] 吴昊.典型场所中氡及其子体平衡因子的研究与应用[M]. 衡阳: 南华大学, 2016.
- [11] UNSCEAE.Sources and effects of ionizing radiation [R] .New York: UNSCEAR.2000.
- [12] 刘艳阳,刘福东,王春红,等.室内222Rn/220Rn子体平衡 因子的初步测量[J].原子能科学技术,2010(44):1527-1531.

Investigation on the Equilibrium Factor of Radon and Its Progeny in Typical Hot Spring Facilities in Hainan

Zhang Linwei, Wang Xin^{*}, Xie Donghai, Tang Yu, Wang Ye, Fu Yifan

(Hainan Province radiation environment monitoring station, Haikou 571126, China)

Abstract: The equilibrium factor of radon and its progeny is an important parameter for estimation and evaluation of radiation doses contributed by radon progeny. In order to understand the level and distribution range of the equilibrium factors in different spaces inside hot spring facilities in Hainan Province, field investigation was carried out by this study. continuous measurement methods were used to measure radon and radon progeny concentrations simultaneously in different spaces in hot spring facilities in different regions in Hainan, and the hot water filling process of indoor hot spring pools was also investigated. The measurement results show that the equilibrium factor is distributed in a wide range, and ventilation conditions are an important factor affecting the equilibrium factor. In general indoors it could be concluded that the better the ventilation, the smaller the equilibrium factor. After the introduction of hot spring water indoors, the concentration of both radon and radon progeny increases, and the equilibrium factor also appeared in slight increased tend.

Key words: hot spring facilities; radon and radon progeny; equilibrium factor

(责任编辑:徐晓娟)

核安全

NUCLEAR SAFETY

石建华,纪涛,王硕,等. 核电工程防造假管理体系建立与优化[J]. 核安全,2024,23(1):8-13. Shi Jianhua, Ji Tao, Wang Shuo, et al. Establishment and Optimization of Anti-counterfeiting Management System for Engineering Project of Nuclear Power Plants [J]. Nuclear Safety, 2024, 23(1):8-13.

核电工程防造假管理体系建立与优化

石建华,纪涛,王硕,陈波

(江苏核电有限公司,连云港 222000)

摘要:近年来,在国内外核电建设过程中发现了个别造假现象,这些造假现象造成了经济 损失,带来了质量隐患,引起了舆情风险。本文阐述了核电工程防造假管理体系建立与优 化的总体思路,辨识、分析和评估了核电行业的造假风险,针对造假风险制定了防控措 施,并探讨了后续的防造假管理体系优化方向,对于提高核电厂工程项目防造假管理能力 具有重要意义。

关键词:核电厂;核安全;防造假;造假风险;监管

中图分类号: TL48 文章标志码: A 文章编号: 1672-5360(2024)01-0008-06

核安全是国家安全的重要组成部分,事关 国家安危、人民健康、社会稳定、经济发展及大 国地位^[1]。党和国家高度重视核安全,把保障 核安全作为重要的国家责任,融入核能开发利 用全过程,始终以安全为前提发展核事业,按照 最严格标准实施监督管理^[2]。

核电厂的建设投资巨大,所需设备庞杂且 质量要求高,国内外供应商在利益驱动或工艺 水平限制条件下,伪造设备、零部件、材料或相 关质量验证文件的现象时有发生,部分案例波 及面很广,产生了直接和间接经济损失,造成了 恶劣的影响,这不仅给核电建设质量和运行安 全埋下隐患,也破坏了核供应链的诚信生态,影 响了国家和人民对核安全的信任。

国家核安全局多次重申,全面依法加强核 安全监管体制机制的建设,依法从严监管,对弄 虚作假零容忍。为此,核电厂必须全面启动防 造假管理体系建设,深入分析造假风险,开发防 控措施,全面预防和打击造假行为,为重大核电 工程建设提供坚实可靠的质量保障。

1 基于风险控制原理设计防造假管理 体系

造假风险辨识是前提,造假风险分析是基础,造假风险评估是关键。为提高管理效率,本 文认为应当将管理资源向造假风险高的物项或 服务上倾斜,彻底杜绝造假行为,从"造假案例 特征分析"和"物项/服务行为分析"两个方面 着手,识别采购、现场施工和安装等过程中的造 假风险。本文收集了国内外核电行业数十起典 型的造假案例,从事件过程、失效点、根本原因 和经验教训等角度深入分析,判断物项/服务发 生造假现象的概率,将概率大的确定为造假风 险点,再对风险点进行影响评估,识别出造假高

收稿日期: 2023-03-06 修回日期: 2023-03-14

作者简介:石建华(1994一),男,工程师,学士,现主要从事核电厂工程质保工作

风险点,最终形成了包含 126 条风险的《建造阶段造假风险清单》。

根据清单,造假行为可归为四类:物项生 产造假、文件记录造假、资质造假和工作过程造 假,如图1所示。

图 1 造假行为特征分析 Fig.1 Analysis of the characteristics of counterfeiting behavior

辨识、分析和评估核电行业的造假风险后, 以"打造标杆精品,树立全球典范"为战略目标, 以协同联动的工程防造假管理架构为组织保障 基础,以层层相扣的防造假程序体系为制度保 障,以搭建互联协同的防造假信息化智能化平 台为技术方法,以"前端全面防控、过程严格管 理和事后严肃问责"为实施手段,本文设计了防 造假管理体系,如图2所示。

2 防控措施

2.1 组织保障和制度保障

2.1.1 防造假管理组织架构

本文认为应当建立与工程总包单位、监理 单位"纵向联动"的防造假管理组织架构,与工 程总包单位签署工程承包合同,与监理单位签 署监理合同,明确防造假责任和义务;与工程总 包单位、监理单位签订"安全、质量、环保责任 书",落实防造假责任与工作考核目标;在工程 季度质量趋势分析报告中增加防造假趋势分析 相关内容,对于异常情况及时组织工程总包单 位、监理单位制订整改行动计划。这一组织架 构实现了三家单位防造假管理要求的贯彻统 一,如图 3 所示。

为了压实防造假责任,本单位建立了横向 协同的防造假管理工作组,明确了各成员的职 责、工作原则和工作内容,形成了一套完整的管 理制度。工作组主要职能如图4所示,其主要 从以下三个方面开展工作:

图 2 核电工程防造假管理体系

Fig.2 Nuclear power engineering anti-counterfeiting system

(1)防造假自查与联合检查。各施工单位成员每月组织防造假管理体系完整性和适用性的自查;工作组对自查活动的开展进行指导,保证各项防造假措施得到落实;工作组每半年组织防造假专项联合检查。

(2)防造假宣贯培训。各施工单位成员定期 组织基层班组防造假宣贯,宣贯内容包括防造 假程序、造假事件学习和上级单位监管要求等; 工作组年终总结当年发现的质量问题,形成经 验反馈材料,内部学习宣贯;工作组制定防造假 工作手册,内容包含核安全文化、质量文化建设 的相关理念、造假案例分析和质量红黄线考核 制度等,发放给一线施工班组,起到警示作用。

(3)建立工作组评优机制。本单位每年对防 造假管理小组工作进行总结,评选出优秀单位 和个人,颁发证书并发函表扬,以充分调动各单 位和个人参与防造假工作的积极性,推动提升 各单位防造假管理水平。

2.1.2 防造假管理程序体系

严格遵守国家法律、法规、规章、标准的要

求,严格落实核电监管部门的管理要求,本单位 建立了"质量保证大纲、防造假管理程序、各类 相关管理程序"三个层级层层相扣的防造假管 理程序体系,如图5所示。

(1)第一层是质量保证大纲。本单位在项目 建造质保大纲中增加了"防造假机制"章节,明 确了建立防造假机制的责任者,以及为防止假 冒和欺诈物项进入核电厂和防止核电厂建造过 程中造假行为所采取的防造假培训、风险识别、 过程管理和举报制度等措施;同时,要求工程总 包单位、监理单位以及各施工单位编制适用于 本单位的质保大纲,确保防造假管理要求得到 有效落实。

(2)第二层是防造假管理程序。本单位生效了防造假管理程序,规定了各业务部门的防造假职责以及防造假措施,并提供了造假信息辨别方法;同时,要求工程总包单位、监理单位以及各施工单位编制适用于本单位的防造假程序,指导防造假工作做实做细。

(3)第三层是各类相关管理程序。本单位 升版了《安全质量环保违章管理》《供方资格管 理》《合同管理》等相关管理程序,将防造假措 施的详细要求落实到相应程序中,并要求工程 总包单位、监理单位以及各施工单位也将防造 假措施的详细要求落实到相应程序中,确保防 造假措施的可执行性。

2.2 防造假信息化智能化平台

通过对造假风险的分析,以及对新技术的 调研,本文发现大多数造假行为的失效点是可 以通过技术手段来识别的,比如对于代签、冒签 等造假行为,可以通过核对"人员轨迹"的方式, 验证现场作业时间与作业人员轨迹的匹配性。

基于 5G、云计算、大数据、物联网、移动通 信和人工智能等先进技术,本单位建设了智慧 工地管理平台。针对造假行为防控,平台实现 了对现场重点区域以及核心作业范围的工作进 行远程视频监控和图像识别;对人员进行实时 位置定位管理,并对人员移动轨迹进行实时记 录存储;可对需要查询的相应人员的全部移动 轨迹或部分时间段轨迹进行查询,轨迹数据实 时生成,并存档;集成与门禁系统的数据接口对 接,实现门禁进出实时联动,对进出信息进行实 时记录,并形成进出管理报表;实现人员滞留告 警、电子围栏告警、区域超时告警、静止异常告 警等多项功能,采用科技手段识别和预防造假 行为。

笔者已着手开发专业的防造假管理平台, 搭建物项防造假验证数据库、质量文件和记录 防造假验证数据库以及供应商单位和个人防造 假预警管理数据库等模块,利用物项关键特征 点数据比对、图像识别、OCR(文字识别)等识别 技术,有效识别物项和记录造假问题。

2.3 前端全面防控

2.3.1 推进工程建设现场卓越质量文化

为了使"质量创造价值,质量成就品牌"的 质量理念深入一线班组和员工,全面开展工程 现场卓越质量文化推进工作是十分必要的。本 单位组织开展"领导讲质量"和"质量大讲堂" 等培训活动,学习"防造假震撼教育""质量工 具及活动方法"等课程:在入厂基本授权培训 课程中增加"典型造假案例警示教育"内容,进 行防造假宣贯,确保任何进入现场的人员熟悉 问题举报渠道:开展核安全文化、质量文化建设 活动,向全员传达防造假的重要性,提升各岗位 员工的责任心:针对工程、采购、OA、OC、验收、 维修和供应商等特定岗位和人员开展防造假经 验反馈或培训:在工程现场出入口展示质量红 黄线违章条款,并向一线作业人员发放质量红 黄线违章随身卡,促进全员严格遵守"弄虚作 假零容忍";要求工程总包单位和各施工单位在 质量政策声明等文件中做出关于防造假的声明 和承诺,组织全体员工签署个人诚信承诺书,做 出"不弄虚作假""主动上报造假问题"等承诺。 上述措施使全体员工充分认识到核电建设期的 质量就是运行期的核安全,推动全员防造假意 识落地。

2.3.2 提高监督检查团队的素质和技能

依据核安全法规、导则和相关标准要求, 本单位梳理和总结一、二、三期工程建设管理经 验,针对容易出现造假行为的记录控制环节,分 析质量记录、质量计划、特殊工艺记录、试验报 告、不符合项报告、设计变更文件、工程特种介 质和人员资质记录八个典型质量记录的检查风 险识别方向,建立记录监督检查细则卡,提炼出 质量记录管理各环节的监督检查方式和内容。 另外,本单位将扩建领域监督活动标准化,编制 覆盖体系文件、培训授权、设计控制、采购控制、 物项控制、施工管理和调试管理七大领域共57 项子要素的监督细则,培养监督检查团队的技 能。监督细则的执行和记录为监督检查人员提 供了工作执行蓝本,培训和宣贯能够有力提高 监督检查人员的技术能力,有力防范弄虚作假 重大风险。

2.3.3 强化良好质量行为的正向激励

本单位鼓励一线班组和个人主动发现、上 报质量问题、异常事件,倡导自觉遵守"弄虚作 假零容忍",为此制定了质量表扬信评价标准。 管理人员在施工现场发现一线班组和个人的良 好质量行为时,立即颁发质量表扬信,在精神激 励的同时给予适当的物质鼓励;收集表扬信获 奖者的事迹,定期制作板报,对先进质量个人进 行展示和宣传,提升个人荣誉感,充分发挥先进 个人的模范带头作用。通过质量正向激励,本 单位在工程现场营造了"强化正面质量行为"的 工作氛围,鼓励了全员挖掘现场良好实践、开展 质量改进活动,从而有效降低造假事件的发生 概率。

2.4 过程严格管理

2.4.1 针对物项生产造假行为进行防控

本单位要求各参建单位在合同文本中增加

防造假相关条款,从源头对物项生产造假风险进 行把控,震慑造假者,对造假问题进行追责,条款 内容包括:明确供方承诺不提供假冒、欺诈和可 疑物项的条款;明确因乙方弄虚作假行为造成甲 方经济损失的索赔条款:明确乙方不得录用或采 购甲方纳入黑名单的人员或物资;在合同文本中 增加防造假条款、公布举报渠道等。同时,综合 考虑物项的安全级别、质保级别和设备成熟性等 因素,本单位通过委派监告人员赴设备制造厂进 行监造活动、根据质量计划设点见证或者执行物 项到货检验等方式来开展物项的质量控制。此 外,本单位明确了监告人员资质要求,开展监告 人员培训,提高人员识别造假问题的能力,并针 对采购的不同物项以及关键工艺特点,细化驻厂 监造工作要求,有效指导驻厂人员开展监造工 作,确保采购物项的质量受控。

本单位编制大宗材料采购管理规则, 梳理 大宗材料清单,明确大宗材料在采购、制造、运 输和抽样复验等环节的管理要求,建立并完善 了工程建设期大宗材料管理体系:制定施工承 包商购买工程材料管理制度,明确了施工承包 商购买大宗材料的定义和详细清单;组织大宗 材料专题会,对大宗材料管理工作进行阶段性 总结,确保大宗材料的质量全面受控。另外,为 了掌握工程使用物项真实的质量状况,本单位 开展大宗材料飞行检验,对大宗材料,尤其是现 场难以验证其功能性的物项,以及对供方提供 的检验报告存疑时,按国家和行业标准的要求 组织取样,并送到与采购方送检机构不同的日 具备资质的检验机构进行第三方检验。大宗材 料飞行检验的实施对各施工单位起到了极大的 震慑作用,有效强化了各施工单位的自律意识, 对工程建设质量起到监督促进作用。

2.4.2 针对文件记录造假行为进行防控

本单位将原始记录的保留期限要求纳入合 同条款中,从源头对文件记录造假风险进行把 控,并在管理程序中对记录的形成、修改、替换 和增补等过程作出详细规定;要求各施工单位 及时在现场形成质量记录,当采用整理数据或 机打记录等方式时,必须保留现场原始记录。另 外,本单位要求各参建单位对供方评价资料和 采购物项的质量证明文件的真实性进行确认; 要求各参建单位建立原材料检验报告等质量证 明文件核对制度,在原材料进场验收过程中形 成核对记录或台账。针对易发生的签字造假行 为,本单位开展焊工、无损检测人员及质检人员 等关键工艺人员的签名备案工作,要求相关人 员在签署质量证明文件时使用与备案一致的笔 迹,定期向工程总包单位和监理单位报送,并将 其作为监督检查人员的查验凭证;将非关键工 艺人员的签字备案记录,留存至本单位质保部 门。相关要求落实后,迅速扭转了工程现场质 量记录形成不及时、不规范情况多发的趋势。 2.4.3 针对资质造假行为进行防控

本单位对物项、工程和服务的合同供方开展 评价工作,以确定供应商是否有能力生产或提供 规定质量的物项或服务,是否有能力提供据以验 收其物项的证据,从而确保由合格的供应商提供 物项或服务;制定了特种作业人员和特种设备作 业人员进场前审查制度,针对特种作业人员采取 制度化管理、入场前报审、官网审核、审核人员签 字、与厂区出入系统相结合和随身携带签字版证 件等管理措施,确保合格的特种作业人员和特种 设备作业人员进入工程现场。

2.4.4 针对工作过程造假行为进行防控

本单位明确监督人员的资质要求,开展监 督人员专项培训,提高监督人员识别造假问题 的能力;将防造假管理专项监督纳入工程领域 年度质量监督计划中,联合工程总包单位、监理 单位对各施工单位开展监督检查,并不定期开 展随机监督。将防造假管理纳入智慧工地项目 进行管控,监督人员在进行关键工艺、重要作业 监督时,可通过核对"人脸识别系统""人员轨 迹"等方式,验证作业人员出入控制区时间与现 场作业时间的匹配性,该方式极大地震慑了心 存侥幸的人员,由于人员轨迹可追溯,所以有效 避免了代签、冒签和补签等违规行为。

2.5 事后严肃问责

2.5.1 拓宽造假问题举报渠道

为了进一步畅通各参建单位员工报告质量

问题和造假问题的渠道,本单位在工程现场设 置了多个造假问题举报箱,同时设置了电子举 报信箱和举报电话,多途径收集造假问题线索; 通过信函、公告等方式向所有与工程质量有关 的人员宣贯造假问题举报渠道,鼓励所有员工 参与防造假工作;对造假问题线索及时开展调 查,根据调查结果采取适当的纠正措施,以防止 类似事件再次发生。

2.5.2 构建多层次考核的立体处罚框架

本单位组织制定质量红黄线管理制度,将 "造假行为"列为红线指标,对责任单位和个人 进行严格考核;在质量趋势分析报告中跟踪统 计红黄线情况,对于触发红黄线的单位定期通 报,必要时约谈责任单位项目领导;对于调查显 示构成质量事故的问题,对其开展质量事故责 任追究;制定供方资格管理制度,将存在弄虚作 假、隐瞒虚报等违规情况的供应商纳入黑名单, 并定期向工程总包单位通报供应商黑名单;对 合同履约过程中的造假情况进行考核,要求责 任方承担全部责任,并赔偿造成的所有损失。

3 总结

通过建立防造假管理体系,本单位实现了 更加科学精细的防造假管理水平和管理效果, 在内部营造了"人人都是一道核安全屏障"的良 好氛围,有力保障了核电工程建设质量,为核电 安全稳定运行打下了坚实的质量基础。

防造假管理体系优化是一项长期的、持续 的工作,下一阶段,笔者将重点研究使用信息化 手段管控造假问题。同时,本文建议各级单位 和人员积极进行技术创新和流程改进,以避免 造假现象的发生,提升工程质量管理水平,进一 步增强核电品牌知名度和社会影响力,营造核 电行业的诚信生态,缓解公众对核电安全的担 忧情绪,不断提升社会公众对核电站安全性能 的认识和信任度。

参考文献

- [1] 佚名. 总体国家安全观干部读本 [J]. 内蒙古宣传思想文化 工作, 2016 (6): 48.
- [2] 佚名.中国的核安全 [N].人民日报, 2019-09-04.

Establishment and Optimization of Anti-counterfeiting Management System for Engineering Project of Nuclear Power Plants

Shi Jianhua, Ji Tao, Wang Shuo, Chen Bo

(Jiangsu Nuclear Power Co., Ltd., Lianyungang 222000, China)

Abstract: In recent years, some counterfeit phenomenon have been found during nuclear power construction at home and abroad, resulting in economic losses, risks of quality and public sentiment. This paper describes the general idea of establishing and optimizing the anti-counterfeiting management system of the expansion project in the Nuclear Power Plant, identifies, analyzes and evaluates the counterfeit risks within the nuclear power industry. In allusion to the counterfeit risks, corresponding prevention and control measures against the fraud risks are be formulated, and the optimization direction of subsequent anti-counterfeiting management system is be researched and discussed, which is of great significance for improving the anti-counterfeiting management ability of nuclear power plant engineering projects.

Key words: nuclear power plants; nuclear safety; anti-counterfeiting; counterfeiting risks; supervision

(责任编辑:徐晓娟)

核安全

NUCLEAR SAFETY

牟童,陈威.高温气冷堆核电厂主蒸汽管道焊接见证件不合格问题研究和经验反馈[J].核安全,2024,23(1):14-19. Mou Tong, Chen Wei. Supervision Experience Feedback and Research of Main Steam Pipe Welding Witness Unqualified in HTR-PM [J]. Nuclear Safety,2024,23(1):14-19.

高温气冷堆核电厂主蒸汽管道焊接见证件不合格问题研究 和经验反馈

牟 童,陈 威

(生态环境部华东核与辐射安全监督站,上海 200233)

摘要: 文章主要介绍了高温气冷堆核电厂主蒸汽管道焊接见证件冲击试验不合格问题中, 营运单位对问题的处理和原因分析过程以及核安全监管部门现场监督情况。本文的目的是 通过对事件经过及现场监督活动的梳理总结,得到一种可以借鉴的类似问题处理经验,促 进相关单位能够更好地在法律法规和相关标准要求下开展核电厂建造活动,进一步提高营 运单位全员核安全文化意识,加强与监管部门的沟通,同时做好经验反馈工作。

关键词:核电厂焊接;核安全;经验反馈

中图分类号: TM623 文章标志码: A 文章编号: 1672-5360(2024)01-0014-06

高温气冷堆核电站示范工程^[1,2](以下简称HTR-PM)主蒸汽系统的主要功能是将来自 蒸汽发生器的蒸汽输送至主汽轮机系统,同时 在汽轮机热态及极热态启动时,为汽轮机轴封 系统提供蒸汽^[3]。高温气冷堆主蒸汽系统管道 为高温机械部件,材质为A335 P91,设计压力 15.7 MPa,设计温度576℃,焊接接头型式如图1 所示,为首次在国内核电厂主蒸汽管道中使用, A335 P91 材料相当于国标10Cr9Mo1VNbN,不 仅具有高抗氧化性能和抗高温蒸汽腐蚀性能, 还具有良好的冲击韧性和高而稳定的持久塑性 及热强性能,焊材选用ER90S-B9。

根据《主蒸汽 P91 钢管道焊接见证件技术 规格书》规定,见证件的制作和检验须遵循《压 水堆核岛机械设备设计和建造规则》(RCC-M

2000 版 +2002 补遗)标准。核安全 2、3 级主蒸 汽管道的对接焊缝均应设置产品焊接见证件, 焊接见证件应按焊接工艺评定试件相同的要求 进行破坏性检验、重复性试验,若破坏性检验和 可能的重复性试验结果不合格,则该焊接工艺 评定应暂停使用,同时主管道现场安装单位应 编制原因分析报告。

收稿日期: 2023-06-27 修回日期: 2023-10-26 作者简介: 牟童(1990-), 男, 工程师, 硕士, 现主要从事核安全监管工作

1 HTR-PM 主蒸汽系统 P91 钢管道焊 接见证件冲击试验情况

HTR-PM 核岛主蒸汽系统管道共计 233 道 焊口,现场焊接 5 道焊口之后开始进行见证件 的焊接。2018 年 11 月,营运单位在进行焊接见 证件冲击试验(20℃)时,发现 3 个试样的冲击 功分别为 40 J、38 J、30 J,均不满足《主蒸汽 P91 钢管道焊接工艺评定变更》中"每个试样冲击功 值≥41(J)"的要求。现场随即暂停主蒸汽管道 焊接施工,此问题造成现场已焊接的 39 道焊口 质量不确定。

为进一步排查原因,2018年12月5日,营运单位对见证件余料第一次加倍取样,选取6个试样进行焊缝冲击试验,冲击功分别为62J、

56 J、62 J、52 J、51 J、46 J,均满足要求。

2018年12月25日, 营运单位对见证件余 料进行第二次加倍取样, 选取6个试样进行焊 缝冲击试验, 冲击功分别为42J、26J、56J、58J、 64J、41J, 其中, 编号为JWJ-017-W-14的试样 不满足要求。

因 JWJ-017-W-14 试样不满足要求,营运 单位现场决定对不合格试样断面进行金相检 验,观察马氏体组织并测量 δ-铁素体含量,并 在不合格试样临近区域再取两组试样进行冲击 试验。金相检验结果为"断面 δ-铁素体含量 为小于 1%,金相组织为回火马氏体"。

2019年2月27日, 营运单位进行了第三次 加倍取样, 选取6个试样进行焊缝冲击试验, 冲 击功分别为37J、53J、51J、38J、42J、56J, 其中,

Fig.2 Sampling location map of theimpact test

编号为JWJ-017-W-16和JWJ-017-W-19的 试样不满足要求。

表 1	历次见证件焊缝冲击试验数据汇总
Table 1	All previous weld impact test data

试验描述	试样编号	冲击功 /J (20℃)	结论
首次冲击	JWJ-017-W-01	40	不合格
试验	JWJ-017-W-02	38	
	JWJ-017-W-03	30	
第一次加倍	JWJ-017-W-04	62	合格
冲击试验	JWJ-017-W-05	56	
	JWJ-017-W-06	62	
	JWJ-017-W-07	52	合格
	JWJ-017-W-08	51	
	JWJ-017-W-09	46	
第二次加倍	JWJ-017-W-10	58	合格
冲击试验	JWJ-017-W-11	64	
	JWJ-017-W-12	41	
	JWJ-017-W-13	42	不合格
	JWJ-017-W-14	26	
	JWJ-017-W-15	56	
第三次加倍	JWJ-017-W-16	37	不合格
冲击试验	JWJ-017-W-17	53	
	JWJ-017-W-18	51	
	JWJ-017-W-19	38	不合格
	JWJ-017-W-20	42	
	JWJ-017-W-21	56	

2 原因分析情况

鉴于原见证件余料的取样位置已用完,营 运单位现场重新焊接并制作了六个试验件进一 步分析原因。

2.1 试样加工偏差对冲击结果的影响

为验证试样加工偏差对冲击结果的影响, 2019年4月,营运单位采用投影曲线磨加工缺 口进行示波冲击试验,试验结果为43J、38J、 34J,与见证件首次试验结果40J、38J、30J基 本一致。此试验结果,基本排除加工偏差对焊 缝冲击试验结果的影响。

2.2 热处理保温时间不足和回火不充分对冲击 结果的影响

为验证热处理保温时间不足、回火不充分 对冲击试验结果的影响,营运单位制作了第一 个试验件,于2019年4月23日完成试验件各 项试验,焊缝冲击功为45J、29J、30J,均不满足 设计要求。由此可知,只增加热处理保温时间 不能改善焊缝冲击值。

2.3 梳理历次焊接工艺评定数据进一步排查

营运单位梳理了 A335 P91 管道历次焊接 工艺评定冲击试验,结果显示,3 次试验均合格。 梳理发现,这3次焊接工艺评定马氏体转变温 度及时间控制为100℃/2 h,而焊接见证件及试 验件的马氏体转变温度为110℃/1.5 h,初步判 断马氏体转变温度及时间的不同可能导致见证 件焊缝冲击试验不合格。历次工艺评定、见证 件、试验件工艺曲线和数据见图3、表2。

以下不控温

图 3 历次工艺评定、见证件、试验件工艺曲线 Fig.3 Heat treatment process curve of all previous

15h

	140	All previous of W	fai tensitie ti ansioi mati	on process data	
序号	焊后热处理工艺	马氏体转变工艺	焊缝冲击试验结果	结论	备注
1	760°C /120 min	100°C /2.0 h	50,52,56	合格	焊接工艺评定
2	760 °C /120 min	100°C /2.0 h	50,48,60	合格	焊接工艺评定
3	760°C /210 min	100°C /2.0 h	64,70,64	合格	焊接工艺评定
		焊接产品见证(牛及第一个试验件冲击计	式验	
4	760°C /120 min	110°C /1.5 h	第一次:40、38、30 示波冲击:43_38_34	不合格	产品见证件
5	760°C /150 min	110°C 115°C /15 h	45 20 20	不合故	笠 人::"孙舟
3	/00 C /150 min	110 C ~115 C /1.5 h	43,29,30	小百怕	第一 个风短件

表 2	历次 P9	[钢焊接工艺评定、见证件、试验件马氏体转变工艺数据汇]	忌
	Table 2	All previous of Martensitic transformation process data	

2.4 马氏体转变温度、时间控制对冲击结果的 影响

为验证可能由于在现场实体焊接时马氏 体转变温度及保温时间的控制与工艺评定不 同导致焊缝冲击不合格,营运单位制作了第 二个试验件。采用与焊接工艺评定相同的参 数进行焊后马氏体转变,并主要开展焊缝冲 击试验,试验取了5组共15个焊缝冲击,全部 合格。说明是马氏体转变温度较高导致冲击 不合格。

为充分验证马氏体转变温度及时间的不同 对焊缝冲击的影响,营运单位制作了第三个和 第四个试验件,两个试验件均采用与工艺评定 相同的焊接热处理参数及过程控制(马氏体转 变温度100℃、保温2h,热处理保温时间2h)。 其中第三个试验件焊缝冲击不合格,第四个试 验件2组冲击数据均合格。

营运单位梳理第三个试验的热处理曲线, 发现未控制好第三个试验件热处理后的降温速 率,降温太慢了,导致其在第二类回火脆性区域 停留时间太长,降低了焊缝的冲击值。

通过对第三个、第四个试验件焊缝冲击结 果的梳理,营运单位发现虽然第三个试验件不 合格,但第三个、第四个试验件焊缝冲击平均 值分别为 50 J、41.3 J、57.7 J、51.7 J,由此可判 断改变马氏体转变温度和时间可以提高焊缝 冲击值。

为进一步验证马氏体转变温度及热处理保 温时间对冲击的影响,同时对比国外品牌焊材 与在用焊材在同种工艺下的冲击性能。营运单 位同时制作了第五个、第六个试验件。第五个 试验件按焊接工艺评定参数(马氏体转变温度 及时间为100℃/2h)制作,热处理保温时间2h, 采用两种品牌焊材对称焊接,各进行2组焊缝 冲击试验;第六个试验件马氏体转变温度及时 间为85℃/2h,热处理保温时间2.5h,采用两种 品牌焊材对称焊接,各进行2组焊缝冲击试验。 这两个试验件各取了4组试样,共24个冲击试 样,全部合格。

历次试验件焊缝冲击详见表 3。

进一步分析可知,第一个试验件只延长 了热处理保温时间,冲击值为45J、29J、30J, 整体效果不好;第二、第三、第四以及第五个试 验件改变了马氏体转变工艺,11组33个焊缝 冲击只出现了2个低值,分别为32J和29J, 但平均值大于50J,整体效果优于第一个试验 件;第六个试验件再次降低了马氏体转变温 度,6个冲击值最低为48J,平均值59.5J,效果 好于前5个试验件。适当降低马氏体转变温 度,更有利于马氏体的转化率,从而改善冲击 韧性值。

此外,营运单位还对比了国外品牌焊材和 国产品牌焊材形成焊缝的冲击试验情况,结论 是焊缝冲击性能相当。

通过以上分析,并结合前期的工艺评定试 验数据,营运单位认为改变马氏体转变工艺可 以改善焊缝冲击性能,同时需严格控制热处理 升降温速率。

	Table 5	An previous were impa	ict test data of werding test pieces	
序号	焊后热处理工艺	马氏体转变工艺	焊缝冲击试验结果	结论
第一个试验件	760°C /150 min	110°C ~115°C /1.5 h	45,29,30	不合格
第二个试验件	760°C /120 min	100°C ~105°C /2.0 h	(70,71,59) (53,35,39) (47,56,52) (61,60,60) (50,59,60)	合格
第三个试验件	760°C /120 min	100°C /2.0 h	32、64、54、29、48、47.复试:39、48、45、42	不合格
第四个试验件	760°C /120 min	100°C /2.0 h	54,63,56,62,50,43	合格
第五个试验件	760°C /120 min	100°C /2.0 h	53、51、58、53、66、51(国产焊材) 70、57、64、60、53、53(国外焊材)	合格
第六个试验件	760℃ /150 min	85°C /2.0 h	72、52、58、69、58、48(国产焊材) 50、67、56、67、51、37(国外焊材)	合格

表 3 历次试验件焊缝冲击试验数据汇总 Table 3 All previous weld impact test data of welding test pieces

3 后续处理情况

按照核安全法规和营运单位质量保证大纲 的要求,营运单位采取了以下措施对上述问题 进行处理:

(1)升版不符合报告,将原焊接见证件进行 报废处理。

(2) 开启实体焊口不符合项,现场抽取5道 实体焊口按升版后的工艺卡,返工处理,完成5 道焊口后制作见证件。

(3)见证件合格后,现场剩余实体焊口 按升版后工艺(马氏体转变温度及时间为 80℃~100℃/2h,热处理保温时间2h,升降温 速率70℃~150℃/h)进行返工处理,并开展主 蒸汽系统施工。因马氏体转变温度在ASME规 范及《主蒸汽P91钢管道焊接工艺评定》中不作 为焊接变素控制,且满足《主蒸汽P91钢管道焊 接技术条件》要求,故不需对马氏体转变温度重 新进行焊接工艺评定。

(4)加强焊接及热处理过程管理和监督,营运单位牵头成立由业主、总承包方、监理和施工承包商组成的主蒸汽管道焊接见证件不合格问题专项攻坚小组,强化各项质量管控措施,施工全程由质保部门独立监督,制定专门预防措施,推动发现问题快速响应。同时,挑选经验丰富和技术过硬的焊工、热处理工开展后续工作。

(5)设计方在重新施工前明确,如果见证件

不合格,将依据ASME-Ⅲ-2004 第1册-NC 卷 规定,评估采用提高主蒸汽系统最低使用温度 方案后焊缝质量的可接受性。后续施工过程中 未出现见证件不合格的情况,因此本条措施最 终未实施。

4 监督检查发现的问题和经验反馈

核安全监督检查部门在该问题处理过程^[4] 中发现了以下问题:

(1) A335 P91 材料在火电领域已成熟运用, 但其首次在核电领域使用便出现了一系列问题,需引起相关单位足够重视。营运单位应建 立相关管理制度,梳理工程中类似情况,及时识 别风险,增加有针对性的防控措施并跟踪落实, 以降低其对工程的影响。

(2)营运单位应切实落实主体责任,严格按 照法规和质量保证大纲开展问题处理。对于不 符合验收准则的问题应及时开启不符合项,符 合建造事件的及时报送建造事件,同时对于发 现的问题,有可能突破相关标准和设计要求的, 营运单位应及时提交国家核安全局进行审评。

(3)监督发现,高温气冷堆主蒸汽系统存在 建造标准不一致以及现场施工过程中未按技术 规格书规定进行见证件热处理和在规定区域进 行试样取样等问题,营运单位应落实核安全全 面责任,加强设计控制和工作过程控制,严格按 照技术文件和标准规范要求开展见证件制作和 试验等活动。

(4)监督发现,营运单位在试验过程中因部 分冲击试验结果不合格,认为焊缝冲击试验结 果存在离散性,后续通过设计变更将验收准则 由"每个试样冲击功值≥41 J"变更为"平均值 不小于 41 J,单个最小值不小于 34 J"。同时,营 运单位在拟采取的整改措施中,计划采用提高 主蒸汽系统最低使用温度的方案,把问题交给 后期运行来处理,以上处理问题的方式没有体 现核电行业应该遵循的"安全第一,质量第一" 的理念,也没有实事求是,直面问题。

(5)根据焊接见证件相关技术规格书和标准 要求,见证件必须在规定时间内完成各项检验, 但A335P 91的试验结果实际上基本是在最迟 时间点才出各种试验结果,虽然没有违反标准 规定,但是增大了检验期间施工的质量风险和 后续返工量。

(6)相关单位应客观看待存在的问题,提升 专家会议的质量,尤其是在第三次原因分析过 程中,专家会意见仍然认为是试样加工问题造 成不合格,导致见证件余料用完,给后期处理带 来困难。

5 结论

本文通过梳理高温气冷堆主蒸汽管道焊 接见证件不合格问题的处理和原因分析过程, 总结了核设施营运单位在处理该问题过程中暴 露出的核安全意识薄弱和管理体系、质量控制 不足的问题,目的是引起核电同行的关注,得到 一种可以借鉴的类似问题处理经验,起到经验 反馈的作用。同时,促进相关单位能够更好地 在法律法规和相关标准要求下开展核电厂建造 活动。

参考文献

- [1] 李志容,陈立强,徐校飞,等.模块式高温气冷堆的固有安 全特性[J].核安全,2013,12(3):1-4.
- [2]赵木,冯九河.浅析10 MW高温气冷实验堆对于高温气冷堆 示范工程的作用[J].核安全,2010(3):59-62.
- [3]华能山东石岛湾核电有限公司.华能山东石岛湾核电厂高温 气冷堆核电站示范工程最终安全分析报告[R].荣成:华能 山东石岛湾核电有限公司,2015.
- [4]杨丰兆,李学法,周鑫,等.高温气冷堆核电厂建造阶段的 核安全监督[J].核安全,2018,17(6):25-31.

Supervision Experience Feedback and Research of Main Steam Pipe Welding Witness Unqualified in HTR–PM

Mou Tong, Chen Wei

(Eastern Office of the National Nuclear Safety Administration, MEE, Shanghai 200233, China)

Abstract: This paper mainly introduces the unqualified problem of steam pipe welding in High Temperature gas cooled Reactor. The purpose is to get a kind of similar problem handling experience that can be used for reference by combing and summarizing the events and on-site supervision activities. Promote the related units to better carry out nuclear power plant construction activities under the requirements of laws, regulations and related standards. Operators should further enhance their awareness of nuclear safety culture and communicate with regulatory authorities and report timely meanwhile the cause analysis and experience feedback should be strengthened to avoid the recurrence of similar problems.

Key words: Nuclear power plant welding; Nuclear safety; Experience feedback

(责任编辑:许龙飞)

核安全

NUCLEAR SAFETY

王美英,张劲,王建军,等. 商品级物项转化单位质量保证要求策划研究[J]. 核安全,2024,23(1):20-25. Wang Meiying,Zhang Jin,Wang Jianjun, et al. Research on the Planning of Quality Assurance Requirements for Commercial Grade Dedication Units [J]. Nuclear Safety,2024,23(1):20-25.

商品级物项转化单位质量保证要求策划研究

王美英¹,张 劲¹,王建军²,陈方强³,赵旭东^{1,*}

(1. 中机生产力促进中心有限公司,北京 100044; 2. 核电运行研究(上海)有限公司,
 上海 310000; 3. 生态环境部核与辐射安全中心,北京 100082)

摘要:随着国内运行机组的增加, 商品级物项转化逐渐成为行业关注的热点,其实施过程中的质量保证工作如何开展, 是商品级物项转化单位的核心工作。本文在分析 ISO 9001 和 HAF 003 之间核心差异的基础上,对商品级物项转化单位实施转化过程中如何确定质量保证要求进行了研究。分析认为充分的商业级调查是商品级物项转化质量保证要求策划信息来源的重要途径;对 ISO 9001 与 HAF 003 之间核心差异的分析以及商品级物项关键特性确定和形成过程的管理方法是商品级物项转化质量保证要求制定的重要内容。 关键词:商品级物项转化;核安全功能;商业级调查;关键特性;质量保证要求 中图分类号: TL48 文章标志码:A 文章编号: 1672-5360 (2024) 01-0020-06

美国联邦法规要求"为核电行业提供核安 全相关的产品或服务的供应商,需要建立满足 10CFR50 附录 B 要求的质量保证体系"。三哩 岛事故后,美国核电设备及备品备件的采购模 式从支持核电站建设阶段的设备大型采购过渡 到支持运行和维修阶段的备用零部件和替代物 项的小型采购。多方面原因致使供应商或退出 核电市场,或不再维持满足联邦法规的质量保 证体系。核电企业不得不从市面上获取安全相 关设备与备品备件,这些市售产品给核电的运 行安全带来了一定的质量风险。基于上述原因, 美国提出商品级物项(Commercial Grade Item, CGI)和商品级物项转化(Commercial Grade Dedication,CGD)的概念,通过行业组织、行业 相关单位和监管方四十多年来的实践和完善,

形成了一套相对完整的包含法律法规、标准、监督管理要求、执行细则等方面内容的管理体系。

目前,我国核电建设正迎来前所未有的发展机遇,同时也面临着在检/维修期间替换用的核安全设备零部件(如紧固件、垫片、滚珠轴承、阀杆、弹簧等)需要采购市售产品进行商品级物项转化的情况,这些市售产品的质量参差不齐,如已发生的"浙江高强度紧固件事件"等,给行业带来了警示。为了确保质量,国内有关单位已开展了商品级物项转化的研究分析和应用,如田湾 5&6 号机组安全级 DCS 的设计与供货使用了经转化的商品级物项^[1]。AP1000 依托项目的机械和电气部件使用了经转化的商品级物项^[2]。大亚湾、岭澳机组也使用了经转化的商品级物

收稿日期: 2023-07-17 修回日期: 2023-11-14

作者简介:王美英(1985—),女,现主要从事质量管理与民用核安全设备政策研究工作

* 通讯作者: 赵旭东, E-mail: zhaoxudong@pcmi.com.cn

项转化的过程中也存在缺少必要的技术评估、转 化过程文件记录不完整、技术要求理解不充分、 次级供应商管理不足等问题^[4]。通过对商品级 物项转化的调研分析,笔者认为商品级物项转 化可以与目前核设备监督管理体系相匹配;其 核心是关键特性识别和质量保证过程管理等^[5]。 本文在前期研究的基础上,对商品级物项转化 单位实施转化过程中质量保证要求策划的途径 及方法展开研究,探索在确保商品级物项能够 满足执行预期核安全功能要求质量的基础上, 实现核质量保证要求的可行路径和方法。

1 转化单位的核质量保证体系

商品级物项供货单位多依据常规产品质量 管理标准,如 GB/T 19001—2016 等,建立和运 行质量管理体系。与核质保体系在产品实现过 程中的管理深度和具体要求以及人员独立性、 记录的完整性、可追溯性等方面存在较大的差 异,同时不同企业对质量管理体系要求的理解 与执行深度不同,企业和工人的诚信水平存在 差异,也极大增加了产品质量的不确定性。

《中华人民共和国核安全法》第十七条规 定:"核设施营运单位和为其提供设备、工程以 及服务等的单位应当建立并实施质量保证体 系,有效保证设备、工程和服务等的质量,确保 设备的性能满足核安全标准的要求,工程和服 务等满足核安全相关要求。"转化单位作为商品 级物项转化实施的主体,必须建立符合《核电厂 质量保证安全规定》(HAF 003)的质量保证体 系。《中华人民共和国核安全法》相关条款的落 地实施,是确保商品级物项能够执行其预期核 安全功能以及确保转化过程有效、完整的必要 条件和基本保障。

在此基础之上,针对质量保证要求的策 划,本文从策划途径和策划方法两个方面展开 研究。

2 质量保证要求策划的途径

商品级物项转化总体上包括技术评价和验 收活动两部分^[6]。技术评价是为了确定所采购 的商品级物项的质量和技术满足要求。验收活 动可以合理地保证所采购商品级物项符合规定 要求且能够执行其预期的安全相关功能。商品 级物项转化的核心是确定关键特性和转化过程 的质量管理。因此在策划商品级物项转化过程 质量保证要求的制定上,应重点关注关键特性 相关的过程管控。这就需要充分地了解转化物 项制造工艺及物项供应商质量管理体系的运行 情况。

商业级调查是对供应商进行的基于绩效的 评估,以确定供应商质量控制的充分性,是商品 级物项转化的四种验收方法之一。由于质量控 制与验收待转化物项的关键特性直接相关,所 以商业级调查除了作为一种验收方法,还可以 作为一种工具在质量保证要求策划中使用。

NRC 在发布的 GL89-02 中给出了商业级 调查的使用限制,具体如下:

(1)当供应商没有商品级物项质量控制程序 或程序不能有效实施时,该方法不应作为接受 物项的依据。

(2)对于经销商销售的物品,除非调查包括 零部件制造商,并且该调查确认了经销商和零部 件制造商都有足够的质量保证控制,否则该方法 也不适用于作为接受经销商物项的依据^[7]。

上述要求明确了商业级调查作为验收方法 的限制条件,同时也明确了商品级物项转化单 位在使用该方法时所需要重点关注的内容。分 析认为,转化单位可以将商业级调查作为一种 与供应商沟通了解待转化物项在设计、制造工 艺过程控制与管理情况的方法。应用这种调查 方法可以获得供应商质量管理体系的建立及运 行情况,供应商在物项制造过程中的参与程度, 对次级供应商的管理方式与管理措施,待转化 物项与替换物项的关系等,可以有效地帮助转 化单位进行基于关键特性的质量保证要求的策 划与制定。

2.1 商业级调查内容

在实际应用中,为了有效评价供应商控制 措施的有效性,商业级调查应有熟悉待转化物 项制造工艺以及待验证的关键特性的技术工程 师参与^[8],这也是 NRC 在 GL89-02 和 GL91-05 提出的有效采购和转化的三个特征之一。商业 级调查需要制订调查计划,应将技术评价中的信 息作为输入,包括物项的识别、已识别的关键特 性及关键特性所特有的特殊工艺(如焊接和热处 理)的控制措施等调查内容,通常包括从物项设 计到最终检查的各环节,具体内容见表 1。

表1 商业级调查通常调查的要素

 Table 1
 Common survey elements for commercial grade surveys

调查要素	要素说明
设计	确保将提供相同或等效物项的控制措施
采购	对下级供应商执行的控制措施,以确保下 级供应商提供的物项符合规定要求
材料识别 与控制	确保仅使用正确和可接受的物项、建立标 识并保持可追溯性的控制措施
制造	确保所制造的物项满足设计要求的控制 措施
组装	确保已正确组装且组件符合设计要求的 控制措施
标定	确保定期标定并调整测量和试验设备,以 将精度保持在必要的范围内的控制措施
试验	确保成功地策划并执行试验的控制措施
检查	确保成功地策划、执行和记录符合规定要求检查活动的控制措施

2.2 商业级调查结果的应用

充分的商业级调查在技术评价、验收方法 选择、质量保证要求制定方面应用良好。如在 关键特性分析前,需要识别是否需要进行等效 性评价,即是否属于同类替换;需要确定替换物 项与原物项是否存在设计与制造的差异。如果 替换物项与被替换物项从同一供应商处采购, 被替换物项自采购之后设计、材料或制造过程 没有任何变化,则替换物项将是相同的物项。 如果识别出与原始物项存在差异,则该物项不 是相同的,而是与被替换的物项相似,并且有必 要进行评估以确定设计、材料或制造过程中的 任何更改是否会影响物项的功能特性,以及最 终部件执行所需安全功能的能力^[9]。通过应用 商业级调查对供应商关于设计、制造过程的了 解,可以得出是否需要对待转化物项进行等效 评价。

商业级调查中获得的供应商对商品级物 项关键特性的控制情况,可以作为验收方法选 择的依据。如果调查发现供应商对关键特性的 控制不足,则商品级物项转化单位需要采取措 施来解决这些不足。解决这些不足的方式可以 是在采购文件中增加需要供应商采取的控制措 施,也可以是使用其他验收方法来验证充分性。 如在制造过程中采取源地验证的方法,即通过 质量计划去检查或见证供应商 / 分包商的执行 情况。

因此,以关键特性调查内容为指引的商 业级调查方法应用过程和结果,是商品级物项 转化质量保证要求策划输入信息来源的重要 途径。

3 质量保证要求策划的方法

策划商品级物项转化质量保证要求需要抓 住 ISO 9001 与 HAF 003 的核心差异,并借助商 品级调查获得的关于物项设计、制造以及供应 商质量管理体系建立及运行情况的信息,有重 点地开展策划工作。

3.1 基于 ISO 9001 与核质保体系的差异方法

ISO 9000 族标准是一系列通用的国际质 量标准,2000 版颁布后也声明适用于核电。在 供应商退出核电市场,导致美国核电企业不得 不从市场上获得安全相关商品级设备与备品 备件的背景下,能否以 ISO 9001 质量认证来取 代 ASME 认证成为 NRC 质量监管不得不面临 的问题。NRC 于 2003 年发布的 SECY—03— 0117 坚决反对通过 ISO 9001 认证既可替代、 也可满足 10CFR50 附录 B 要求的评论^[10]。并 专门就 ISO 9001 在核领域的应用进行了评估, 将 10CFR50 附录 B 的 18 个准则分别拆分成 69 个子项,逐一与 ISO 9001 (2000 版)进行了比 较,共计有 35 项内容是 ISO 9001 没有或者达 不到核质保要求的,部分举例见表 2。主要体 现在:

表 2 10CFR50 附录 B 与 ISO 9001:2000 差异部分举例 Table 2 Examples of Differences between 10CFR50 Appendix B and ISO 9001:2000

10CFR50 附录 B	ISO 9001 : 2000	主要差异
允许将建立与执行质保大纲的责 任委托给其他单位,但申请者仍对 质保大纲负责	当选择任何影响产品符合相关要求过程外包时, 一个组织应当确保对这些过程进行控制(4.1)	没有描述申请者保留责任
要求识别大纲控制的物项,并且控制程度与物项安全重要性相匹配	高层管理者应确保按照组织内相应职能和层级 建立质量目标,包括那些需要满足的产品要求 (5.4.1)	没有直接关联安全
要求影响质量的活动应当在受控 条件下完成	为了获得符合产品要求,组织应当确定并管理工 作环境(6.4)	没有明确与质量相关
要求控制先决条件	组织应当监视和测量产品特性以验证产品要求 被满足(8.2.3)	没有直接要求控制先决条件

(1)设计控制中 ISO 9001 没有要求设计验 证的独立性,没有规定通过设计审查、使用其他 计算方法、执行适当试验大纲的具体验证方法;

(2) ISO 9001 没有明确要求通过采购文件 将质量保证要求传递到安全相关重要物项的供 应商或承包商;

(3) ISO 9001 没有要求执行检查和试验活动人员的独立性;

(4) ISO 9001 的内部审查与 10CFR50 附录 B 规定的检查差别很大,前者的性质、效果及独 立性方面均不及后者。

我国制造业大多认证的是等同采用ISO

9001:2015的 GB/T 19001—2016,是推荐性标准, 企业自愿执行;而 HAF 003 是核安全法规,核设 施营运单位和核安全设备的设计、制造、安装和无 损检验单位必须强制执行,两者性质完全不同。

从意图上,ISO 9001 与核质保体系的关注 焦点不同。ISO 9001 把顾客要求放在首位,鼓 励建立供需合作关系,相互依存、共同创造价 值。而核质保体系,突出的不是利益、价值,而 是质量,最终目的是确保核安全。

为了掌握二者之间的差异,笔者所在单位 对每个控制要素规定的控制要求进行了对比, 列举部分差异,详见表3。

HAF 003	GB/T 19001—2016	主要差异
3.1 职责、权 限和联络	5.3 组织的岗位、 职责和权限	GB/T 19001—2016 仅要求"最高管理者确保组织相关岗位的职责、权限得到 分配、沟通和理解",而 HAF 003 要求"建立明文规定的组织结构,明确联络 渠道",同时规定了"验证人员的独立性、质保职能部门和人员的权力和组织 独立性"等
3.2 单位间的 工作接口	7.4 沟通	HAF 003 要求"配备所需的人员,以有效实施质量管理体系""必须对参与影响质量活动的单位之间和小组之间的联络作出规定",GB/T 19001—2016 7.4 节规定"确定与质量管理体系相关的内部和外部沟通"指向措施不明确
3.3 人员配备 和培训	 7.1.2 人员 7.1.6 组织的知识 7.2 能力 7.3 意识 	GB/T 19001—2016 要求"确定人员能力需求,提供人员培训",没有更具体的 措施要求,而 HAF 003 则要求"对所有从事影响质量的活动的人员进行资格 考试,制定培训大纲和程序,确保大纲并保持足够的业务熟练程度,制 定相应的计划。该计划必须反映出工作进度,酌情颁发资格证书",比 较具体

表 3 HAF 003 与 GB/T 19001—2016 差异部分举例 Table 3 Examples of Differences between HAF003 and GB/T19001—2016

除上述条款的对比外,由于核电行业的特殊性和重要性,执行通用质量管理标准的企业 缺乏核安全敬畏意识以及核安全文化素养,给 商品级物项的质量埋下了不可预知的风险。因 此,在质量保证要求策划中不仅需要考虑二者 的核心差异,人的意识也是不容忽视的。

3.2 基于过程的方法

商品级物项转化的核心是识别关键特性, 因此质量保证要求的策划应围绕识别关键特性 和形成关键特性的过程管理展开。

在识别关键特性环节,需要确定关键特性 识别的完整性、合理性。基于此,质量保证要求 的策划需要关注商品级物项转化单位技术评价 人员的资历、技术评价充分性(对物项识别的准 确性、安全功能分析的充分性、分析依据的正确 性、确定的关键特性是否能够覆盖物项的核安 全功能、验收方法能否有效地确认待转化物项 的质量等)的控制措施,如采取同行评审、技术 总工审核、专家会等。

针对形成关键特性的环节,商品级物项转 化单位需要确定人、机、料、法、环等各方面的符 合性以及供应商质量管理措施的合理性。质量 保证要求策划需要关注是否需要技术交底、设 计变更的管理、供方的管理、材料的管理、测试 器具的标定管理、检/试验人员的资质、有无特 殊工艺、对特殊工艺的质量控制措施、生产/验 证记录的策划等。

基于对过程完整性及可追溯性的考虑,还 需要对商品级物项转化的验收过程(主要是验 收方法执行过程及抽样方案的合理性)及证实 转化过程有效的文件体系进行策划,确保商品 级物项转化是有据可查的。

简言之,基于过程的方法将商品级物项转 化分为技术评价过程、生产过程及验收过程,围 绕这些过程进行质量保证要求的策划,既包含 对商品级物项转化单位执行商品级物项转化的 质量保证要求,又包括最大限度地确保关键特 性质量所对应的供应商质量管理要求。

4 结论

商品级物项转化单位需要建立并实施满 足 HAF 003 要求的质量保证体系。针对质量保 证要求策划的途径和方法,分析研究认为:充分 的商业级调查是商品级物项转化质量保证要求 策划输入信息来源的重要途径;对 ISO 9001 与 HAF 003 之间核心差异的分析以及商品级物项 关键特性确定和形成过程的管理方法是商品级 物项转化质量保证要求制定的重要方法。

参考文献

- [1]宋祉霖,杨洋,曲昌明,等.商品级物项转化在中国核电领域中的应用[J].技术经济与管理,2021,4(上):131-133.
- [2]张营,蒋中明.商品级物项转化在AP1000环吊中的运用 [J].发电设备,2016(3):160-163.
- [3] 胡振华,任涛,赵军.商品化关键特性的识别方法研究[J]. 电气技术与经济管理,2021(5):68-71.
- [4] 裴红伟,石秦,周洋,等.核电厂零部件质量验证存在的问题及改进建议[J].仪器仪表用户,2023,30(3):66-69.
- [5]赵旭东,杨成,王美英.商品级物项转化管理要求研究与建议[J].核安全,2022,21(6):80-87.
- [6] Guideline for the Acceptance of Commercial-Grade Items in Nuclear Safety-Related Applications Revision 1 to EPRI NP-5652 and TR-102260 [R]. California: EPRI, 2017.
- [7] Actions to Improve the Detection of Counterfeit and Fraudulently Marketed Products, Generic Letter 89–02 [R]. Washington, DC: U.S.NRC, 1989.
- [8] Licensee Commercial-Grade Procurement and Dedication Programs, Generic Letter 91-05 [R]. Washington, DC: U.S.NRC, 1991.
- [9] EPRI. Guidelines for the Technical Evaluation of Replacement Items in Nuclear Power Plants (Revision 1): EPRI-TR1008256
 [R].U.S: Electric Power Research Institute, Inc., 2006.
- [10] Adopting more widely used international standards and methods, SECY-03-0017[R]. Washington, DC: U.S.NRC, 2003.

Research on the Planning of Quality Assurance Requirements for Commercial Grade Dedication Units

Wang Meiying¹, Zhang Jin¹, Wang Jianjun², Chen Fangqiang³, Zhao Xudong^{1,*}

(1. China Machinery Productivity Promotion Center Co., Ltd, Beijing 100044, China; 2. Nuclear Power Operations Research Institute Co. Ltd., Shanghai 310000, China; 3. Nuclear and Radiation Safety Center, MEE, Beijing 100082, China)

Abstract: With the interesting of operating nuclear power unit in China, commercial grade dedication has gradually become the focus of the industrial. How to carry out quality assurance work during its implementation is the core work of commercial grade dedication units. On the basis of analyzing the core differences between ISO 9000 and HAF 003, this article conducts research on how to determine quality assurance requirements during the dedication process of commercial grade dedication units. Analysis suggests that sufficient commercial grade surveys is an important way to plan the input information source of the quality assurance requirements of commercial grade dedication; The process management method based on the analysis of the core differences between ISO 9001 and HAF 003 and the determination and formation of critical characteristics is the main method for formulating quality assurance requirements for commercial grade dedication.

Key words: commercial grade dedication; nuclear safety function; commercial grade survey; critical characteristics; quality assurance requirements

(责任编辑:梁晔)

核安全

NUCLEAR SAFETY

賀敏,王雨竹,侯钢领,等. 校企合作背景下核电构筑物健康监测专硕人才培养的探索与实践[J]. 核安全,2024,23(1):26-32. He Min, Wang Yuzhu, Hou Gangling, et al. Exploration and Practice of Professional Master's Talent Cultivation in Health Monitoring for Nuclear Power Plant Structures under the Background of University-Industry Cooperation [J]. Nuclear Safety, 2024, 23(1):26-32.

校企合作背景下核电构筑物健康监测专硕人才培养的 探索与实践

贺 敏,王雨竹,侯钢领*,陈玥瑶

(哈尔滨工程大学烟台研究院,哈尔滨 150001)

摘要:核电作为清洁能源的重要组成部分,对其构筑物健康监测的需求日益增加。然而, 传统的专业硕士培养模式难以满足核电行业对具备实践能力和行业背景人才的需求。因此, 校企合作必然成为培养核电构筑物健康监测专业硕士人才的重要途径。本文剖析了核电行 业安全发展对构筑物健康监测的迫切需求,指出了目前核电构筑物健康监测专业硕士培养 模式存在的局限性,并探讨了校企合作的内涵和意义。通过借鉴哈尔滨工程大学烟台研究 院专硕人才培养特色举措,本文针对核电构筑物健康监测专业硕士人才培养分别从课程体 系制定、实践平台搭建、双导师指导、产学研用有机结合以及质量评估和持续改进等方面 探讨了实施路径。本文将为核电构筑物健康监测专硕人才培养提供一定的借鉴与参考。 关键词:校企合作;核电构筑物;构筑物健康监测;专业硕士;人才培养 中图分类号:G643 文章标志码:A 文章编号:1672-5360(2024)01-0026-07

核电构筑物健康监测作为核电站安全管 理与监测的重要组成部分,旨在及时发现和评 估核电构筑物的健康问题和状况,预防潜在的 结构问题和灾害风险。核电站作为复杂而庞大 的工程系统,其构筑物承载着重要的职能和责 任^[1]。核电构筑物包括核反应堆厂房、安全壳、 蒸汽发生器等组成部分。由于核电站运行环境 的特殊性,结构材料会受到高温、高压、辐射等 多种因素的影响,长期运行过程中可能会出现 疲劳、腐蚀、裂纹等问题,甚至引发结构失效和 事故^[2-4]。因此,对核电构筑物进行健康监测 成为确保核电站安全运行的必要手段^[5]。除了 核电站建设和运营外,核电构筑物健康监测领 域还包括研究和开发、咨询服务等方面的工作。 这些领域也需要大量的专业人才来支持其发 展。因此,核电构筑物健康监测领域的专业人 才需求量将继续增长,并且未来该领域的就业 前景非常广阔。

然而,核电构筑物健康监测领域的专业人 才相对匮乏,与其他工程领域相比,该领域相对 较新,它的研究和实践历史较短,尚未有足够的 时间来建立足够数量的专业人才队伍^[6]。此外, 由于核电站的建设和运营需要高水平的安全保 障,因此对人才的要求也非常高。这就意味着,

收稿日期: 2023-06-16 修回日期: 2023-08-09

基金项目:黑龙江省重点研发计划项目,项目编号:2022ZX01A14;烟台市校地融合发展项目,项目编号:22MZ03CD012;中核 集团领创科研项目,项目编号:KY90200210017;中核四〇四有限公司项目,项目编号:KY10200200115 作者简介:贺敏(1989-),男,准聘副教授,博士,现主要从事结构健康监测领域的研究工作

需要采取措施来提高核电构筑物健康监测领域 的专业人才数量和素质。尽管有一些大学提供 核工程专业,但很少有专门针对核电领域结构 健康监测的课程或专业。高校培养的人才缺乏 相关核电行业实践背景,可能会限制人才的发 展。因此,需要考虑在校企合作背景下,如何为 核电构筑物健康监测专硕人才培养搭建合适的 平台和选择正确的培养模式。

校企合作是一种将学校和企业资源有机融 合的合作模式^[7-9]。通过与核电企业的合作,学 校能够深入了解核电行业的需求和挑战,同时 为企业提供专业技术支持和人才培养。校企合 作机制可为核电构筑物健康监测专硕人才提供 培养平台和产教融合机遇。本文探讨了核电构 筑物健康监测专硕人才培养的模式,旨在探索 如何培养和提升核电行业中从事结构健康监测 工作的专业人才。本文通过分析现有人才培养 状况和问题,探索有效的人才培养策略和方法, 从而提升核电构筑物健康监测人才的素质和 能力。

1 核电构筑物健康监测专硕人才培养 的挑战

核电属于安全要求高、专业性强的行业, 核电构筑物健康监测又属于多学科交叉领域, 其在人才培养方面面临的主要挑战有以下几 方面:

(1)技术复杂性和专业性要求

核电构筑物健康监测需要高度专业化的技 能和知识,涉及多种复杂的监测技术和方法,包 括无损检测、结构动力学分析、数据处理与分析 等。这些技术要求人才具备深厚的理论基础和 实践经验,以及对核电站运行原理和结构特点 的全面了解。

(2)教育体系和课程设置不完善

目前,一些高校在核电构筑物健康监测人 才培养方面的教育体系和课程设置相对滞后, 缺乏完善的专业培养方案、实践训练项目和相 关教材,难以满足核电构筑物健康监测人才培 养的需求。

(3)师资队伍的匮乏

核电构筑物健康监测领域需要具备丰富实 践经验和专业知识的师资队伍来进行指导和教 育。然而,目前这方面的专家和教师资源相对 匮乏,导致学生在专业知识和实践技能方面的 培养受到限制。

(4)缺乏实践机会

结构健康监测涉及实地调研、数据采集和 分析等实践活动。然而,由于核电站的安全性 要求非常高,学生很难获得真实的核电站数据 和实践机会,导致学生在实践能力和经验方面 相对欠缺。

(5) 实践环节和产学研合作不足

实践操作和解决实际问题能力是核电构 筑物健康监测人才不可或缺的素质。然而,目 前实践环节相对不足,缺乏与核电企业的合作 机会,难以获得实际操作经验和实际工程案例。 此外,产学研合作不足也限制了人才培养的质 量和深度。

(6) 技术更新和发展速度快

核电行业是一个不断发展和创新的领域, 新的技术和方法不断涌现。人才培养需要与行 业的技术更新保持同步,这也给教育机构和企 业带来了挑战,需要其及时调整课程设置和教 学内容。

针对这些问题,我们需要加强学校与核电 企业之间的合作与沟通,共同解决师资队伍、实 践机会、设备资源等方面的问题。同时,学校应 关注行业发展动态,及时调整教育培养方案,引 人先进技术和实践案例,提升学生的实践能力 和适应能力。

2 校企合作在专硕人才培养中的意义 和内涵

校企合作在专业硕士学位人才培养中具有 重要的学术意义和内涵。2017年国务院办公厅 印发了《关于深化产教融合的若干意见》,提出 了"校企协同、合作育人"的育人目标^[10]。2022 年发布的《关于深化现代职业教育体系建设改 革的意见》也指出"构建央地互动、区域联动,政 府、行业、企业、学校协同的发展机制"。校企合 作开展研究生培养,能够满足行业对人才的内 在要求,可以帮助学校更好地了解行业的需求 和变化,确保专硕人才培养的内容与行业要求 紧密对接^[11]。通过与企业的合作,学校可以及 时了解行业的最新技术、趋势和挑战,调整专业 课程设置和教学内容,培养出符合行业需求的 专业人才。校企合作在专硕人才培养中的意义 和内涵主要体现在以下几个方面:

(1)实践导向

校企合作强调专业人才培养的实践导向。 对学生而言,通过与企业的合作,能够接触到真 实的工作场景,参与实际项目和任务,将理论知 识应用到实际问题中。这种实践导向的培养模 式使得学生能够更好地适应职业发展需求,提 高解决问题的实际能力。校企合作能够为学生 提供更多的实践机会,培养其实践技能,并将教 学与实践有机地结合起来。高校教师可以通过 与企业合作,将企业的实践经验和案例引入教 学内容中,在教学过程中引导学生通过实际案 例和问题学习相关知识。同时,学校还可以与 企业合作开展实践课程、实验实训和实践项目, 为学生在实践中应用所学知识、提升实践能力 创造条件。

(2)产学结合

校企合作实现了学校和企业之间的产学结 合。学校通过与企业紧密合作,能够及时了解 行业需求和发展动态,根据行业需求调整专业 课程设置,提高培养质量和适应性。校企合作 能够促进专业硕士学位人才培养与实际需求和 创新进一步接轨,学校与企业的合作可以实现 知识和技术的相互流动,促进教育和产业的双 向交流。通过与企业合作,学生能够接触到前 沿的研究和技术,加强实践创新能力,培养创新 精神和创业意识。

(3)产业发展支撑

校企合作为专硕人才培养提供了产业发展的支撑。通过与企业的合作,学校能够培养出符合行业需求的专业人才,为产业发展提供有力支持。学生毕业后能够快速适应工

作岗位,为企业的技术创新和发展做出贡献, 推动产业的进步和竞争力提升。校企合作促 进了企业与学校的创新能力提升,通过与企业 的合作,学校能够获取前沿研究和技术的热点 和需求,将科研成果应用于实际项目中,推动 科研成果向实际应用转化,为产业的创新发展 提供支撑。学校可以与核电企业合作开展继 续教育和培训项目,为企业员工提供进修学习 和专业培训的机会。这将有助于提升企业员 工的专业素质和技能水平,满足企业对人才的 需求。

3 校企合作背景下核电构筑物健康监 测专硕人才培养策略

3.1 哈尔滨工程大学烟台研究院专硕培养模式 借鉴

哈尔滨工程大学烟台研究院(以下简称"烟 台研究院")发挥哈尔滨工程大学"三海一核" 特色优势,对接驻地企业需求,积极探索专业学 位研究生培养的新模式,一直致力于培养理论 知识与工程应用相融合、满足社会需求的高素 质人才。烟台研究院在以下方面的特色举措(见 表1)可为核电构筑物健康监测专硕人才培养提 供借鉴和参考。

3.2 核电构筑物健康监测专硕人才培养策略

校企合作背景下核电构筑物健康监测专 业硕士人才培养策略需要结合核电行业的需 求和实际情况,培养具备核电构筑物健康监测 相关知识和技能的专业人才。在校企合作中, 学校应该与企业通力合作,发挥高校在教书育 人、科技研发等方面的特色优势;企业可以为学 生提供实习、实训、项目实践机会,并提供必要 的资源和设备支持。校企合作是培养核电构 筑物健康监测专业硕士人才的有效路径和必 要选择,通过学校和核电行业的紧密合作,为 学生提供实践机会和行业导师的指导,以培养 具备行业知识和实践能力的高层次应用型人 才,其人才培养模式如图1所示。以下是培养 核电构筑物健康监测专硕人才的关键步骤和 方法。

表1 哈尔滨工程大学烟台研究院专硕培养特色举措

Table 1 Special measures for the training of masters and masters in Yantai Research Institute of Harbin Engineering University

举措	具体内容
产学研合作项目, 校企共建研究中心 (实验室)	学校与企业合作开展产学研合作项目,通过联合研发、技术转移等方式,将学校的科研成果应 用到实际生产中,培养学生的创新能力和实际应用能力。与企业合作共建研究中心或实验室 共同开展项目研究和创新,从而有力加强了学校与产业之间的交流合作,以及提升学生的实践 和创新能力
专班制培养,专业 对接企业需求	学校积极与企业合作,为学生提供实习实训机会,让学生在实际工作环境中学习和实践,培养 实际操作能力和解决问题的能力。学校密切关注企业的人才需求,调整专业设置和课程内容, 使之更符合企业的需求,培养与市场紧密结合的专业人才
企业导师制度,企 业专家讲座	学校与企业合作设立企业导师制度,邀请企业专业人士来校进行指导和教学,提供学生实践指导和职业规划建议。学校定期邀请企业代表来校进行讲座和招聘活动,让学生了解企业的需求和行业动态,为学生提供就业机会和实习机会

(1)课程体系制定

课程体系的制定应依据核电构筑物健康 监测领域的需求。课程体系设计应充分考虑 理论和实践相结合的因素,并重视培养学生的 创新能力和实际应用能力。同时,随着核电行 业的发展和技术的进步,课程体系也应不断进 行更新和调整,以适应行业的需求和变化;设 计与核电构筑物健康监测相关的专业课程, 涵盖理论知识、技术方法和实践技能;结合工 程实例和案例分析进行教学,使学生能够了解 真实的结构健康监测问题和解决方案;引入现 代教学技术和工具,例如虚拟实验室、仿真软 件等,加强学生的实践操作和分析能力。笔 者认为核电构筑物健康监测课程体系在设 计时应从基础课程、专业核心课程和拓展课程(校企联合课程)三方面考虑。课程设置见表2。

(2) 实践平台搭建

学校应当与核电企业合作建立实训基 地,为学生提供真实的实践环境。这些实训基 地可以模拟核电站的结构,让学生学习并掌 握核电构筑物健康监测的实际操作技能。学 校应当与核电企业建立紧密的合作关系,为 学生提供实习机会。学生可以在核电企业实 习期间,参与结构健康监测相关工作,了解核 电行业的运作和管理,并将理论知识应用到 实际中。学校可以和核电企业合作开展研究 项目,推动核电构筑物健康监测技术的创新 和发展。让学生参与相关研究可为他们提供 一个独特的视角,使他们深入了解最新的技 术趋势和发展方向。通过企业实践和项目合 作,学生可以将所学知识应用到实际中,培养 实际操作能力和解决问题的能力,提高自身 在核电构筑物健康监测行业的实践能力和 竞争力。

(3)行业导师与学校导师共同指导

学校应当与核电行业的企业、研究机构 或专业协会合作,选拔具有丰富实践经验和 专业知识的行业导师。行业导师可来自核电

表 2 核电构筑物健康监测课程设置 Table 2 Curriculum design for HMNPPS

课程类别	具体内容
基础课程	核电基础知识相关课程:核反应堆的基本原理、核电站的组成结构和工作原理,以及辐射防护等基础知识 结构力学:介绍结构力学的基本理论,包括静力学、动力学和振动理论等,为后续的结构健康监测 提供理论基础
专业核心课程	结构健康监测原理与技术:介绍结构健康监测的基本原理、传感器和监测设备的种类和工作原 理,以及相关的数据采集、处理和分析技术 监测方法与技术:深入介绍结构健康监测的各种方法和技术,如振动监测、应力监测、声发射监测 等,包括其原理、应用场景和实际操作技巧 监测数据处理与分析:讲解监测数据的处理与分析方法,包括数据的预处理、特征提取、异常检测 与诊断等内容 结构评估与预测:介绍结构评估的方法和技术,包括基于监测数据的结构健康评估、寿命预测和 可靠性分析等内容
拓展课程 (校企联合课程)	监测系统与安全管理:介绍核电结构健康监测系统的组成、运行管理和安全保障等方面的知识, 包括监测系统的布置与部署、数据传输与存储、设备维护与校准等内容 实践与案例分析:组织学生参与实际的核电结构健康监测项目,进行实地考察和实验操作。通过 实际操作和案例分析,有力提升学生的实际操作能力和解决问题能力 前沿技术与发展趋势:介绍核电结构健康监测领域的前沿技术和发展趋势,包括无损检测、智能 监测、大数据分析等,培养学生对新技术的理解和应用能力

企业的技术专家、工程师或监测领域的专业 人士。他们能够为学生提供实践指导、项目 指导以及行业动态的更新等方面的支持。高 校可以招聘具有核电构筑物健康监测领域专 业知识和教学经验的教师。教师团队应该 包括核电结构工程、监测技术、数据分析等 领域的专家。他们应该具备教学能力和指 导学生参与科研项目的能力。建立健全"双 导师"制度,与导师团队共同制定培养方案, 确保学生的学习和实践能够与行业需求相 匹配。

(4)产学研用有机结合

建立核电企业、高等院校和科研机构之间 的紧密合作关系,形成产学研用一体化的培养 模式。核电企业提供实际的工作场景和问题, 高等院校提供系统的专业知识和理论基础,科 研机构提供先进的监测技术和方法。通过合作 项目、实习实训等方式,让学生在实践中掌握核 电构筑物健康监测的技能和知识。核电构筑物 健康监测需要综合运用来自多个学科领域的知 识和方法,因此培养学生具备交叉学科的能力 和创新的思维至关重要。鼓励学生参与跨学科 的科研项目和创新实践,培养他们的问题解决 能力和创新思维至关重要。学校应与企业建立 资源共享与合作平台,为学生提供实验设备、数 据资源和学术交流的机会,同时与其他科研机 构以及国内外相关企业建立合作关系,开展合 作研究项目,为学生提供更广阔的学术和职业 发展平台。

(5)质量评估和持续改进

质量评估和持续改进是确保核电构筑物健 康监测专硕人才培养策略有效性的重要环节。 本文认为应建立一个定期的评估机制,对核电 构筑物健康监测专硕人才培养方案进行评估。 评估可以包括学校、用人单位和学生三个层面 的综合评估。学校评估由学校、院系或专业组 织进行,企业评估可以由行业协会、相关企业或 其他高校进行。评估内容包括课程设置、教学 质量、实习实践、师资队伍、学生综合素质等方 面。学生评估的目的是了解学生对课程设置、 教学质量、实践环节等方面的意见和建议,可以 通过问卷调查、学生座谈会或个别面谈等方式 进行。学生的反馈对于改进教学质量和调整培 养方案具有重要的参考价值。通过以上的质量 评估和持续改进策略,我们可以不断优化核电 构筑物健康监测专硕人才培养方案,提高教学 质量和培养效果,培养出符合行业需求的高素 质人才。

4 结论

本文在校企合作背景下探讨了核电构筑 物健康监测专硕人才培养的方法及实施路径。 校企合作是核电构筑物健康监测人才培养的 关键策略之一。通过与核电企业紧密合作,结 合专业课程设置、实践教学、师资队伍建设、学 科交叉培养等策略,可以培养出适应行业需求 的高素质人才,并推动核电构筑物健康监测技 术的发展与应用,持续进行质量评估和改进工 作,确保人才培养方案的质量和有效性。校企 合作模式可以有效提升核电构筑物健康监测 专硕人才的培养质量和实践能力,实现校企 共赢的目标。这种合作模式能够更好地满足 核电行业对人才的需求,促进行业的发展与 创新。

参考文献

- [1]周艳兵,施钟淇,金典琦,等.基于有限元模型的核电厂安 全壳结构健康监测评估方法 [J].建筑结构,2022,52(S1): 2205-2209.
- [2] 廖家鹏,吴欣强.核电材料高温高压水缺口疲劳性能研究现 状与进展[J].中国腐蚀与防护学报,2018,38(6):511-516.
- [3]任俊,史强,王宝祥.核电厂核岛主设备关键焊接技术浅析
 [C]//中国核学会.中国核科学技术进展报告(第六卷)——中国核学会2019年学术年会论文集第10册(核安全分卷、核安保分卷).中国原子能出版社,2019:254-258.
- [4]张忠伟,赵彦芬,赖云亭,等.核电厂高强度螺栓的氢脆和应力腐蚀问题[J].中国电机工程学报,2021,41(9): 3259-3273.
- [5]钟李军,及世良,韩玉仲,等.核电厂内层安全壳智慧监测 技术的研究与应用[J].智能建筑与智慧城市,2022(2): 10-12.
- [6]侯钢领,孙晓丹,郭铁宏.土木工程核电站建设人才培养模式的探讨[J].黑龙江高教研究,2014(3):157-159.
- [7]金敏,德雪红,刘行,等.校企合作共同开发实践课程资源的探索与研究——以机械设计制造及其自动化专业为例[J]. 黑龙江科学,2022,13(13):159-161.
- [8] 荆丽丽.产学研背景下校企合作"本导制"模式的研究与实践[J].集宁师范学院学报,2022,44(3):1-3.
- [9] 俞启定. 深化职业教育产教融合校企合作若干问题的思考[J]. 高等职业教育探索, 2022, 21 (1): 1-7.
- [10] 胡清华,王国兰,王鑫.校企深度融合的人工智能复合型人 才培养探索[J].中国大学教学,2022(3):43-50+57.
- [11] 尹筑嘉,黄建欢,王健康.校企合作培养硕士研究生的模式 与创新探讨[J].湖北经济学院学报(人文社会科学版), 2009,6(8):55-57.

Exploration and Practice of Professional Master's Talent Cultivation in Health Monitoring for Nuclear Power Plant Structures under the Background of University–Industry Cooperation

He Min, Wang Yuzhu, Hou Gangling^{*}, Chen Yueyao

(Yantai Research Institute of Harbin Engineering University, Harbin 150001, China)

Abstract: As an important part of clean energy, the demand for health monitoring of nuclear power plant structures (HMNPPS) is increasing. However, traditional professional master's degree education models are unable to meet the needs of the nuclear power industry for talents with practical abilities and industry background. Therefore, university-industry cooperation is inevitably becoming an important way to cultivate professional master's degree talents in HMNPPS. This study analyzes the urgent demand for structural health monitoring in the safe development of the nuclear power industry, identifies the limitations of the current professional master's degree training model in HMNPPS, and explores the connotation and significance of university-industry cooperation. By drawing on the distinctive measures of talent cultivation at the Yantai Research Institute of Harbin Engineering University, this study discusses the implementation path of professional master's degree talent cultivation in HMNPPS, focusing on curriculum development, practical platform establishment, dual mentor guidance, integration of facademia, industry, and research, as well as quality assessment and continuous improvement. This study provides valuable insights and references for the cultivation of professional master's degree talents in HMNPPS.

Key words: university-industry cooperation; nuclear power plant structures; structural health monitoring; professional master's degree; talent cultivation

(责任编辑:许龙飞)
第23卷第1期

2024 年 2 月

核安全 NUCLEAR SAFETY

夏凡,刘书勇,李桃生,等. 燃料组件堵流工况下铅铋 - 氩气两相流的传热压降特性分析[J]. 核安全,2024,23(1):33-47. Xia Fan,Liu Shuyong,Li Taosheng,et al. Flow Blockage Phenomenon of LBE-argon Two Phase Flow in a Wire-wrapped Fuel Assembly [J]. Nuclear Safety,2024,23(1):33-47.

燃料组件堵流工况下铅铋-氩气两相流的传热压降特性分析

夏 凡^{1,2,3}, 刘书勇^{1,*}, 李桃生^{1,2}, 梅华平¹, 汪 振¹, 赵吉运³

(1. 中国科学院合肥物质科学研究院核能安全技术研究所,合肥 230031; 2. 中国科学技术大学, 合肥 230026; 3. 香港城市大学机械工程系,香港)

摘要:带绕丝燃料组件的堵流事故是铅冷快堆安全分析的重要工况之一。由于在铅铋自由 液面处的气体夹带或在气体增强自然循环条件下存在铅铋 - 氩气的两相流情况,可能引 起燃料组件堵流工况下的局部热工水力特性变化。本文通过计算流体力学软件 Fluent,对 带绕丝 19 棒束燃料组件进行建模,模拟分析了堵流工况下的铅铋 - 氩气两相流传热压降 特性,并对两相流模型进行了对比验证,对入口雷诺数、堵块孔隙率、氩气气泡直径等因 素进行参数敏感性分析。结果表明:在堵流条件下氩气气泡的流动行为包括逃逸、耗散和 受限,在气相体积分率较高的区域会产生局部微正压及过热现象。研究结果可为铅冷快堆 堵流事故的安全分析提供参考。

关键词: 铅冷快堆; 燃料组件; 堵流; 两相流; CFD 数值模拟 中图分类号: TL33 文章标志码: A 文章编号: 1672-5360(2024)01-0033-15

第四代铅冷快堆具备安全性好及易小型化 的优势,在分布式供电、海岛平台等领域具有广 阔的应用前景。在安全性方面,无论是回路式还 是池式设计,堵流都是重要的事故工况,必须给 予考虑^[1-3]。堵流的起因主要是由于氧控不良引 起氧化铅在组件内的沉积^[4],或是由于腐蚀脱落 的结构材料碎片随冷却剂带入,造成组件内的堵 流。燃料组件内堵流发生后会进而引发过热和 局部流量下降,影响堆的安全运行^[5-8]。

对于液态铅铋冷却的堵流实验研究,Pacio J等开展了块状堵块实验,通过设置低导热系 数的固体堵块,研究了不同堵流工况下的流动 传热^[9]。该堵流实验指出,实际堆运行中堵块 多为多孔介质,由于多孔堵块的加工制造存在 困难,因此该实验采用的堵块并没有设置孔隙 率。2019年,意大利 ENEA 基于铅铋冷却回路 (NACIE-UP)开展了堵流实验研究,结果表明, 堵流后方形成局部温度峰值,堵流子通道活性 区末端形成全局温度峰值^[10]。对于堵流模拟研 究,2014年,Di Piazza等建立 CFD 模型对无绕 丝工况下燃料组件堵流现象进行了数值模拟, 研究结果表明:对于多子通道堵流,在堵块下游 的回流区域出现温度峰值;对于少子通道堵流, 温度峰值出现在活性区域末端^[11]。2019年,上

研究与探讨

收稿日期: 2023-07-21 修回日期: 2023-11-12

基金项目:科技部国家重点研发计划,项目编号:Grant No. 2022YFB1902503

作者简介:夏凡(1996—),女,博士研究生,研究领域为反应堆热工水力学

^{*} 通讯作者: 刘书勇, E-mail: shuyong.liu@inest.cas.cn

海交通大学柴翔等基于 KIT 实验装置,采用多 子通道堵流方式进行了模拟,结果表明中心通 道堵流包壳温度高于角通道温度^[12]。2020年, 吕科锋等对带绕丝 19 棒束铅铋多孔介质堵流 进行了模拟,得出包壳存在圆周温度变化^[13]。 上述研究均限于铅铋冷却单相流,未涉及两相 流的流场计算。

对于铅基堆而言,通常采用氩气作为保护 气体或在加强自然循环中提供驱动压力^[14-16], 因此存在铅/铅铋-氩气两相流工况^[17-19]。本 文对于液态金属-氩气两相流的数值模拟主 要关注如下两个方面的研究。一方面,对于加 强自然循环工况^[20-23],关注的重点在于铅铋空 泡份额与氩气注入速率之间的关系^[21,23]。另 一方面,在泵驱动的强迫循环工况下,回路运行 前需先用氩气将空气排空,再注入氩气将熔化 的液态铅铋打压进入回路。组件复杂结构内的 部分区域难以被铅铋充满,残留的氩气会滞留 在回路内并形成局部"死区",可能因导热不良 引发局部过热,如有堵流发生,可能会加剧局部 温升。

因此,本文通过数值模拟给出铅铋 - 氩气 两相下的气泡行为,进而分析堵区局部过热和 压降特征。

1 研究方法

1.1 单相流计算方法

通常,燃料组件内液态铅铋的单相流动可 以视为不可压缩流体,满足连续性、动量守恒和 能量守恒方程。文献[33]针对采用气泡提升 泵加强自然循环工况,对比了 ε 型及 ω 型湍流 模型的相对误差,得出 standard k- ε 计算误差较 小且节省计算资源,因此本文采用 standard k- ε 湍流模型,详细公式可以参见 ANSYS FLUENT theory guide^[24]。对于多孔介质堵流,堵塞区域 要增加考虑动量源项,见式(1)~式(3)。其中, *S*_{porous} 是多孔区域动量源项。

$$S_{porous} = -\frac{\mu}{\beta} u_{hetr.} + Const._{inert.} \times \frac{1}{2} \times \rho \times |u| \times u_{hetr.} (1)$$

式中,下标 hetr. 可以是 *i*,*j*,*k* 三个方向的分

量,表示速度在空间 x,y,z 上呈各向异性变化。 多孔区域内的动量损失由黏性损失[即式(1)第 一项]和惯性损失[即式(1)第二项]构成^[25]。 式(1)中变量 β 为不透水性,定义见式(2)。

$$\beta = \frac{d_{par}^2 \phi^3}{150(1-\phi)^2}$$
(2)

式中,*d_{par}*是颗粒直径,mm。Ø是孔隙率。 该方法首次由 Ergun 于 1952 年提出^[26],并且可 以应用于铅铋多孔介质模拟仿真^[17]。式(1)中 惯性损失常数定义为摩擦系数和水利直径的比 值,如公式(3)所示。

Const. _{inert.} =
$$\frac{\Delta p}{L_{ref.} \frac{\rho}{2} u^2} = \frac{f_{fric.}}{d_h}$$
 (3)

针对液态铅铋低普朗特数特性,即液态 铅铋与水相比具有更大的热边界层^[27]。在 ANSYS FLUENT 软件中,默认的对流换热和 湍流普朗特数是针对液态水进行求解的,因此 在求解铅铋介质时会带来误差。Lyu Kefeng 等针对 *P/D* 为 1.14、带绕丝的铅铋冷却燃料组 件堵流工况,采用如公式(4)^[28]所示的湍流普 朗特数(*Pr_i*)关系式,获得了较为合理的分析 结果^[13]。

$$Pr_{t} = 0.85 + \frac{0.7}{Pr\frac{v_{t}}{v_{t}}}$$
(4)

1.2 两相流计算方法

两相流的处理方法分为两类:一类是均相 流模型,适用于气相含量比较低,并且两相相对 速度不大的情况;另一类是分相流模型,即对 气液两相分别进行处理,对每一相计算其平均 物理参量。ANSYS FLUENT 提供的多相流处 理方法有 VOF (Volume of Fraction)模型、混合 物(Mixture)模型和欧拉(Eulerian)模型,前两 种模型属于均相流模型,而 Eulerian 模型属于 分相流模型。鉴于泵驱动的强迫循环和加强 自然循环工况下,氩气含量很少,铅铋-氩气 相对速度不大,因此可以采用 VOF 模型,采用 CSF (Continuum Surface Force)方法模拟表面 张力^[29]。

2 模型建立及验证

2.1 铅铋冷却燃料组件单相流模型

本文以德国 KIT 铅铋冷却燃料组件实验流 动传热数据为基准^[9,32],进行数值计算结果的比 对验证。实验装置侧视图及堵块设置如图 1 所 示,燃料组件主要参数见表 1。堵流实验采用电 加热的均匀面热源,热功率为 394±4 kW。铅 铋入口温度为 200±0.2℃,质量流量为 18.7± 0.2 kg·s^{-1[32]}。

本课题组已完成了正常运行工况和全堵 工况的流动传热及网格无关性验证,结果显 示,温度的模拟结果与实验相比,最大相对误差 在±4.9%,摩擦系数与实验推荐经验关系式的 相对误差在±9.2%^[33]。相对误差的计算方法为: (数值模型计算值-实验参考值)/实验参考值。

Table 1 Main parame	eters of the fi	iel assembly			
项目名称	单位	数值			
燃料棒数目	_	19			
燃料棒外径	mm	8.20			
燃料棒中心距	mm	10.49			
节径比(P/D)	_	1.279			
绕丝直径	mm	2.20			
绕丝螺距	mm	328			
边心距	mm	24.65			
组件加热段长度	mm	870			
组件总长	mm	2229			
内部子通道水力直径	mm	4.74			
组件水力直径	mm	5.20			

表1 燃料组件主要参数^[32]

图 1 燃料组件实验装置侧视图(黄色矩形区域为堵块位置)^[11] Fig.1 Side view of the testing platform (blockages are highlighted in yellow)^[11]

2.2 铅铋 - 氩气两相流模型

基于表1的燃料组件结构,本文采用 FLUENT软件中自带的FLUENT Meshing模块,针对表1的中心6子通道堵流(简称C₆工 况)和边1子通道堵流(简称 E₁ 工况)两种工况,分别进行几何结构建模及网格划分,并在堵块上游设置一个圆形气泡的起始位置,如图 2 所示。

图 2 堵块及气泡起始位置局部网格划分 Fig.2 Mesh display for the blockage regions and gas bubbles

加热棒的壁面边界条件采用与图 1 基准实 验一致的均匀热流密度,对于小堵块 E₁ 工况,为 0.93 MW·m⁻²;对于大堵块 C₆ 工况,考虑降功 率保护,设置为 E₁ 工况的 1/4,即 0.23 MW·m⁻²。 铅铋入口条件采用不同雷诺数下的质量流量进 口,温度为 473.15 K;出口处设置为压力出口,压 强取 0 Pa。氩气气泡的起始位置设置在堵块区 域前方 10 mm 处,直径为 1.0~2.0 mm(见表 3 第 2 列),并对气泡可能流经的区域进行网格加密。 本文采用 FLUENT 软件对流场进行初始化,在 圆形气泡区域通过 patch 方式使其充满氩气。在 瞬态计算时,设置连续性方程收敛条件取 10⁻⁴ 量 级,动量及能量方程收敛条件取 10⁻⁵ 量级。考虑 到流速和最小网格尺寸,时间步长取 1×10⁻³s。

为验证两相流模型,本文同步通过速度拟 合法^[34]和气泡稳定形态图示法^[16]进行验证。 其中,前者属于经验关系式,后者属于经验图 示,均来源于对大量实验数据和结果的总结归 纳。而本文数值模型采用 VOF 方法属于两相 求解方法,其与连续性方程、动量方程和能量方 程一并用于两相速度、能量的计算求解。采用 VOF 方法得到的数值模拟结果若与经验图示及 经验关系式的求解结果相一致,则表明 VOF 方 法用于铅铋 - 氩气工况计算是适合的。

对于速度拟合法,研究指出,通过计算无 量纲数 Fr,Eo,Mo 和 Nf数(Nf数为 Eo、Mo 的 组合)可以得到两相间作用力的影响情况。当 Eo>70时,表面张力可以不考虑;当 Nf>550 时,黏性作用影响很小;当 Fr<0.05时,惯性作 用可以不考虑^[34]。根据 ANSYS 理论手册^[24], 对于 Re≫1 的工况,We 数(惯性力和张力之比) 不可忽略,当 We≫1 时,张力影响可以忽略。 这些无量纲数的表达式(见表 2 第 2 行)与 本文工况点 1~6(见图 4)的计算结果各参数列 于表 2 第 3 行。由计算结果可知,惯性力和张 力的影响是主要影响因素,惯性力占主导。当 惯性力的影响占主导时,根据文献[34]可知,垂 直管内流体速度应当满足 $u = Const. \times U_1 + U_{g,c}$, 其中 U_1 为液相流速,m/s; $U_{g,c}$ 为最终稳定时气 泡头部中心线上的速度,m/s。对于湍流,Const. 的经验值取 1.2。由于 VOF 模型只能获得流体 速度 u,因此,将流体速度 u 与铅铋入口速度 U_1 进行拟合(见图 3),得到 Const. 约为 1.05,该值 稍小于经验值^[34],相关系数 R^2 为 0.9997,这与 其他研究者的结论一致,因此可以认为模拟的 结果是可以接受的。

图 3 惯性力主导下流体速度和液相速度拟合结果 Fig. 3 The fitting curve for inertial force dominated velocities between two-phase flow and the liquid LBE

对于气泡稳定形态图示法^[30,31],本文选取 边1子通道堵流工况下的6个工况点作为研 究对象,其中1~2研究气泡直径的影响,3~6研 究雷诺数的影响,工况点各参数取值见表3。 网格加密区域的两相流流速和气相雷诺数由 FLUENT求解器输出,分别见表3第4列及第5

表 2 无量纲数的表达式及本模型中计算结果 Table 2 Expressions for dimensionless numbers and calculation results

无量纲数	Fr	Ео	Мо	Nf	We
表达式*	u/\sqrt{gD}	$g(ho_l- ho_g)d_{bub.}^2/\sigma$	$g\mu_l^4(ho_l- ho_g)/ ho_l^2\sigma^3$	$(Eo^{3}/Mo)^{1/4}$	$\rho_l u^2 D/\sigma$
工况点 1~6	1.19~8.49	0.25~1.00	$4.74 \cdot 10^{-13}$	425.59~1203.92	9.72~494.67

* 注:u 为流体速度 /($\mathbf{m} \cdot \mathbf{s}^{-1}$),g 为重力加速度 /($\mathbf{m} \cdot \mathbf{s}^{-2}$), μ 为动力黏度 /($\mathbf{kg} \cdot \mathbf{m}^{-1} \cdot \mathbf{s}^{-1}$),D 为特征长度 / \mathbf{m} , d_{bub} 为气泡直径 / \mathbf{m} , ρ_{g} 相较液态 铅铋的 ρ_{l} 而言很小,因此由 ρ_{l} 计算。

列。Mo数、Eo数、Re数定义式分别见式(5)~式 (7)^[16],通过计算获取这三个无量纲数列于表3 后3列之中。由FLUENT软件计算后,获得气 泡随无量纲数变化稳定时的形态如图4所示。 考虑到计算结果的可靠性,选取Grace经验图示 (见图5)作为基准形态,将表3参数对照图5坐标,画出工况点1~6各点位置,见图5黄线所示。 根据图5形态划分,工况点1落在球状(Spherical) 区域,其余5个工况点均落在抖动状(Wobbling) 区域。对比图4中本模型中输出的稳定形态,以 及图5中气泡稳定时的理论形态,可知本论文采 用VOF方法的模拟结果与经验结果相吻合。

$$Mo = \frac{g\mu_l^4(\rho_l - \rho_g)}{\rho_l^2 \sigma^3}$$
(5)

$$Eo = \frac{g(\rho_l - \rho_g) d_{bub.}^2}{\sigma}$$
(6)

$$Re_{bub.} = \frac{\rho_l u_{dense} d_{bub.}}{\mu_l} \tag{7}$$

3 堵流工况下的两相流特性分析

本节考虑铅铋夹带氩气工况下,基于两相 流模型验证结果,对 C₆工况和 E₁工况的局部 过热和压降分别进行计算分析,并对入口雷诺 数、孔隙率及气泡直径进行了参数敏感性分析。

表 3 氩气气泡在液态铅铋中稳定上升时各参数取值(E₁工况下,孔隙率 0.2) Table 3 Values of parameters for steady rising bubbles for E₁ blockage

图 4 中各 对应点	气泡初始直径 / mm	LBE 入口 Re 数	网格加密区域两 相流流速 /(m•s ⁻¹)	氩气气相 Re 数	Mo 数(log(Mo))	Eo 数
工况点 1	1.0	15700	0.5539	2380.77	4.74e-13	0.2496
工况点 2	1.5	15700	0.5498	3544.72	(-12.32)	0.5617
工况点 3	2.0	15000	0.7524	6468.01		0.9986
工况点4	2.0	20000	0.9562	8219.96		0.9986
工况点 5	2.0	30000	1.4451	12422.31		0.9986
工况点 6	2.0	40000	1.9179	16487.03		0.9986

堵块边界条件设置分为两种:一种是以外边界 为壁面来模拟实心堵块情况;另一种是外边界 为内部面并设置孔隙率来模拟多孔介质堵块 情况。

3.1 C₆工况

3.1.1 入口雷诺数的影响

(1) 堵块外边界为壁面条件

本文通过设置气相等体积分率的监测面, 观察含气区域因导热不良造成的温升。选取组 件轴向位置 348~552 mm 的体平均温度为参考 温度, 堵块在 492~546.6 mm 区域, 相对于参考 节段位置为 70.6%~97.4%, 气泡直径保持 2 mm 不变。图6给出了不同雷诺数下气相等体积分 率(VOF_{Ar})在[0.6~0.9]范围内的过热情况。由 图 6 可知,随流动时间的增加, VOF Ar 较高的等 值面不一定存在连续性。其中图 6(a) 至图 6(b) 表明雷诺数较低时, VOF Ar 为 0.9 的等值面大 概率能够在 0.08 s 内监测到; 而雷诺数较高时, 且 VOF_{Ar} 值较大时, 气泡存在时间较短, 仅约 为 0.03 s, 如图 6(c) 所示。且 VOF_{Ar} 值越高, 引 起的局部过热越明显。壁面边界与内部面边界 相比,在瞬态条件下气相体积分率可以保持在 较高的水平($C_{4r}>0.5$),从而导致引起的过热更 严重。

图 7 给出了当流动时间为 0.01 s, Re 为 15000 时入口条件下的局部 VOF_{Ar} 分布及温度 云图。由图 6 的计算结果可知, 尽管 VOF_{Ar} 监 测面温度均值约在 550 K, 尚在可接受的范围, 然而图 7 局部最高温度接近 1000~1500 K, 这可 能对局部结构完整性造成威胁。

图 8 给出了中低雷诺数下气泡被封闭的 现象,由图可知雷诺数较低时,气泡可能会卡 在堵块附近形成"死区",并伴随明显的过热。 图 9 显示了高雷诺数下气泡逸出现象,由于在 高雷诺数下高速流动的液态铅铋可能将气泡 带出堵流区域,引起气泡逃逸,从而使高含气 量的维持时间很短。即便在 0.1 s 后再次监测 到高等值面,逸出气体引起的局部过热也微乎 其微。

图 6 不同雷诺数下气相等值面温度变化(C₆ 工况,外 边界为壁面)

图 8 中低雷诺数下气泡被封闭现象(C₆工况) Fig.8 The sealed bubble for low and immediate *Re* of C₆ blockage conditions

(2) 堵块外边界为内部面条件

在该类边界条件下,气泡可以贯穿多孔堵 流区域,最终逃逸出该区域。为了研究不同入 口 Re 影响,本文取孔隙率为 0.8 和气泡直径为 2 mm 且保持不变,观察不同时刻气相等值面温 度变化。

图 10 给出了不同雷诺数下 VOF_{Ar} 等值 面温度计算结果,由图示可知,高 VOF_{Ar} 值面 存留的时间非常短,且低 VOF_{Ar} 值时温度随 流动时间近似线性升高。例如,*Re* 取 5000 的 条件下, VOF_{Ar}取 0.8 的等值面存留时间仅 为 50 ms, 如图 10(a)所示。由图 10(b)可以 看出,随着雷诺数增加, VOF_{Ar}等值面存在时 间缩短, 且最终引起的温升有所降低。然而, 堵块在内部面边界条件下引起的过热并不显 著。例如, 流动时间为 0.15 s时, 以堵块所在 节段的流体的体平均温度为参考, 在 Re 为 5000 时 VOF_{Ar}取 0.6 的等值面过热为 5.4 K, 而壁面条件的相同雷诺数下, 其过热温度已达 22.6 K。

为监测氩气及堵流区域的静压瞬态变化, 研究者在 FLUENT 软件中创建了一条监测线贯 穿多孔堵流区域。该直线的 x,y 坐标与气泡起 始位置的坐标保持一致,得到不同雷诺数下沿 轴向方向静压变化曲线。图 11 显示随着堵块 位置轴向坐标的增加,高 VOF_{Ar} 区域可能引起 局部静压的小幅上升(微正压现象)。特别是在 气泡进入多孔区域瞬间,引起的相对静压增量 约为 0.3%。由图 11(a)~图 11(b)的变化可知, 雷诺数越低,微正压现象越明显。这一现象从 两相流稳定条件出发可以解释为:气泡在液体 中平衡存在除了需要具有一定的过热度外,气 相和液相压差还需满足 p_g - p_i = $2\sigma/r*$ 条件,其中 p_g 为气泡内的压力, $Pa;p_i$ 为液相压力, $Pa;\sigma$ 为 表面张力,N/m;r*是界面曲率, $1/m^{[35]}$ 。因此, 对于不透明介质,可以利用这一现象来监测气 泡的位置。

3.1.2 孔隙率的影响

为研究孔隙率对局部过热和压降特征的影响,本文铅铋入口雷诺数取临界 *Re*,即过渡流向 湍流转变的 *Re_{bt}=15700*,且气泡直径取 2 mm 保 持不变,计算得到不同时刻孔隙率[0.2,0.8]的 *VOF*_{Ar} 值监测面温度曲线,如图 12 所示。

由图 12(a) 可知, 孔隙率取 0.2 时, 等值面 温度比该节段流体的体平均温度过热显著, 温 度曲线和全堵工况趋势类似。这是由于气泡被 限制在堵块局部形成"死区"[见图 13(a)], 与 全堵工况时形成的"死区"相比, 低孔隙率下气 泡并未完全被限制, 而是分裂成一个较大的主 气泡和一个较小的子气泡。主气泡未被限制而

Fig.11 The pressure drops of diff. inlet *Re* for C₆ blockage conditions

逃逸,而子气泡被限制在堵块区域,如图 13(b) 所示。

对于孔隙率为 0.4 [见图 12(b)]的情况,在 0.03 s 后仅低 VOF_{Ar} 值能够被监测到,这种工况 下,气相也会引起比较明显的过热。气相随流 动时间增加分裂成多个子泡,缓慢逃逸出多孔 堵流区域。当孔隙率增至0.6时,除了可以观察 到气泡逃逸[图14(a)]之外,气相还会随流动时 间增加缓慢耗散在多孔堵流内部,如图14(b)所 示。当孔隙率增至0.8时,气泡能够完整地随流 体从堵块出口逸出多孔介质区域,并不会引起 明显的过热现象。

图 12 不同孔隙率下温度计算结果(C₆工况, *Re*=15700, 气泡直径为 2.0 mm) Fig.12 Temperature of iso-surfaces for gas phase at C₆ blockage conditions

图 13 孔隙率 0.2 时气泡行为, t =0.1 s(C₆ 工况)

Fig.13 The behavior of gas bubbles when porosity is 0.2 at C_6 blockage conditions, t = 0.1 s

Fig.14 The behavior of gas phase when porosity is 0.6 at C₆ blockage conditions

3.1.3 气泡直径的影响

为探究气泡直径的影响,研究者分别设置 直径为 2.0 mm、1.5 mm 和 1.0 mm 的圆形气泡, 其余参数取 *Re=Re_{bt}=15700*,由于小孔隙率可能 引起较为严重的过热,故选取孔隙率为 0.2 并对 所有工况保持一致。

图 15 为不同气泡直径下 VOF_{Ar} 值监测 面温度计算结果。由图 15(a)可知,仅在直径 为 2.0 mm 时,高 VOF_{Ar} 值监测面的存留时间 较长,在 0.02 s 内引起的过热较为明显。图 15 (b)显示直径为 1.5 mm 的气泡在 0.015 s 左右 存在约为 2 K 的短期过热。这是由于仅直径为 2.0 mm 分裂出子泡并伴随有"死区"形成(见图 13),其他气泡直径下均未分裂出子泡。因此,在 铅铋-氩气的夹带工况中,应当关注气泡尺寸 (直径≥2.0 mm)较大的情况;在氩气加强自然循 环工况中应当合理控制气泡的注入尺寸。

3.2 E₁工况

3.2.1 入口雷诺数影响

与上述探讨 C₆工况时控制变量法的思想类似,为研究铅铋入口雷诺数影响,研究者控制气泡直径为 2.0 mm,孔隙率为 0.8,设置入口雷诺数以 5000 为增量递增,变化范围为 5000~40000,观察堵流工况下气泡行为、压降及 过热特征,结果如下。

(1) 堵块外边界为壁面条件

在边1子通道堵流(E₁工况)下,气泡相较 中心通道堵流有更大的逃逸趋势。图16(a)(b)

图 15 不同气泡直径下气相温度计算结果(C_6 工况,孔隙率 0.2, *Re*=15700) Fig.15 Temperature of gas iso-surfaces for different bubble diameters (\emptyset =0.2, *Re*=15700, C_6 blockage conditions)

分别显示了 Re 为 10000 和 15000 时气泡的逃 逸现象。模拟结果显示,在 Re≥10000 时,气体 在多孔区域内的存留时长不超过 0.01 s 便缓慢 逸出。因此,除了 Re 为 5000 时气相的过热较 为明显外,其余雷诺数下气相引起的过热皆不 明显。

(2) 堵块外边界为内部面条件

在 E₁ 工况下,堵块位于轴向 710.7~765.3 mm 段,参考节段为组件加热段轴向 696~870 mm 时,堵塞位置所在该段 8.4%~39.8% 的中上游位

置。图 17显示了 Re 为 20000 的条件下, 堵块 区域静压的变化情况。由图示可知, 当流动时 间由 0.01 s 增至 0.03 s 时, 高气相含量区域存在 与中心 6 子通道工况类似的微正压现象(图中 箭头所指位置为气泡位置)。

温升方面,在 0.03 s内, *VOF*_{Ar}等值面温度 近似指数上升, 然而其引起的过热并不明显, 因 此本文不进行展开阐述。

3.2.2 孔隙率影响

边通道堵流下,孔隙率大小可能会对气泡

Fig.17 Pressure changes for E₁ blockage, *Re*=20000

在多孔介质内的存留时长造成影响。在图18中, 研究者对不同孔隙率下气泡是否逃逸进行了对 比,由模拟结果可知,当孔隙率不太大(Ø<0.8) 时,气泡容易在短期内逃逸,VOF_{Ar}等值面温度 上升到一个峰值温度然后下降;当孔隙率比较 大(Ø≥0.8)时,气泡不易从多孔介质内逸出,因 此能够被加热较长的时间,VOF_{Ar}等值面温度 近似指数形式上升,温升也比小孔隙率时更为 显著。

3.2.3 气泡直径影响

流动时间为0.01 s时, 气泡直径分别为

1.0 mm、1.5 mm 和 2.0 mm 的气相参数和两相流 动的模拟结果已经在模型验证部分进行了阐述 (见图 4)。对于不同直径,气泡皆能够存留在多 孔区域较长时间,但引起的温升均在1 K 以内, 并不显著。随流动时间的增加,不同直径的气 泡缓慢耗散在液态铅铋中,*VOF*_{Ar} 监测值也逐渐 降低。

4 总结

本文对带绕丝的19棒束六边形燃料组件中心通道和边通道堵流工况下,铅铋-氩气夹

带两相流的局部过热和压降特征进行了阐述, 主要结论如下:

气泡行为可以概括为三类,即逃逸、耗散以 及受限形成"死区"。入口雷诺数、孔隙率、气泡 直径三者共同作用对气泡行为造成影响,进而 影响堵块区域的传热和压降特征。

(1)孔隙率较小,入口雷诺数较大时,较易发 生逃逸现象。边子通道堵流条件下发生的可能 性大于相同参数下的中心通道堵流。

(2)在孔隙率较大时,较易发生耗散现象,可 能伴随气泡逃逸。

(3)铅铋入口雷诺数较小(*Re*≤*Re_{bT}*),孔隙率 较小时,较易发生受限现象。直径较大(2 mm)的 气泡可能分裂出一个小的子泡,引起受限过热。

在过热特征方面,气相更易在堵块附近存 留形成高体积分率区域,并引起过热。与堵块 外边界为内部面时相比,堵块外边界为壁面时 所引起的过热现象更为显著。

在压降特征方面,高 VOF_{Ar} 区域会引起局 部微正压现象,造成堵块轴向监测线上静压的 小幅上升,微正压的出现位置与流动时间和铅 铋入口雷诺数有关。

致谢:作者对所有为本文工作提供帮助指 正的人员表示感谢。本文是在科技部国家重点 研发计划,Grant No. 2022YFB1902503项目的 支持下完成的,本文数值模拟得到了合肥先进 计算中心的支持,在此特别表示感谢。

参考文献

- Han J T. Blockages in LMFBR Fuel Assemblies A Review of Experimental and Theoretical Studies [D]. OAK Ridge: OAK Ridge National Laboratory, 1977.
- [2] Kirsch D. Investigations on the flow and temperature distribution downstream of local coolant blockages in rod bundle subassemblies [J]. Nuclear Engineeringand Design, 1974, 31 (2): 266–279.
- [3] Kikuchi Y, Daigo Y, Ohtsubo A.Local sodium boiling behind local flow blockage in simulated LMFBR fuel subassembly [J].J Nucl Sci Technol, 1977, 14 (11): 774–790.
- [4] Zrodnikov A V, Chitaykin V I, Gromov B F, et al. Use of Russian Technology of ship reactors with lead-bismuth coolant

in nuclear power [R]. Moscow: Russian Federation, 2000: 127–132.

- [5] Chai X, Liu X, Xiong J, et al. CFD analysis of flow blockage phenomena in a LBE-cooled 19-pin wire-wrapped rod bundle [J] Nuclear Engineering and Design, 2019, 344: 107–121.
- [6] Xu W, Ouyang K, Guo J, et al. Experimental and numerical investigations on heat transfer and flow behavior of flow blockage in narrow rectangular channel with protrusions [J]. Applied Thermal Engineering, 2022, 203: 117954.
- [7] Wang G, Niu S, Cao R. Summary of severe accident issues of LBE-cooled reactors [J]. Annals of Nuclear Energy, 2018, 121: 531–539.
- [8] Fukano Y.Development and validation of SAS4A code and its application to analyses on severe flow blockage accidents in a sodium-cooled fast reactor [J].Journal of Nuclear Engineering Radiation Science, 2019, 5 (1).
- [9] Pacio J, Daubner M, Fellmoser F, et al. Heat transfer experiment in a partially (internally) blocked 19-rod bundle with wire spacers cooled by LBE [J]. Nuclear Engineering and Design, 2018, 330: 225-240.
- [10] Marinari R, Piazza D I, Tarantino M, et al. Blockage fuel pin simulator experiments and simulation [J]. Nuclear Engineering and Design, 2019. 353 (C): 110215–110215.
- [11] Di Piazza I, Magugliani F, tarantino M, et al. A CFD analysis of flow blockage phenomena in ALFRED LFR demo fuel assembly [J]. Nuclear Engineering and Design, 2014, 276: 202–215.
- [12] Liu X J, Yang D M, Yang Y, et al. Computational fluid dynamics and subchannel analysis of lead-bismuth eutecticcooled fuel assembly under various blockage conditions [J]. Applied Thermal Engineering, 2020, 164 (C): 114419-114419.
- [13] Lyu K, Ma X, Wang H, et al. CFD analysis of thermalhydraluic behaviors in a LBE cooled 19-pin wire wrapped bundle under porous lumped blockage conditions [J]. Annals of Nuclear Energy, 2021, 151: 107956.
- [14] Suzuki T, Chen X, Andrei R, et al., Transient analyses for accelerator driven system PDS-XADS using the extended SIMMER-III code [J]. Nuclear Engineering and Design, 2005, 235 (24): 2594-2611.
- [15] Wu J, Cao W, Cong T. Numerical investigation on the performance of gas-lift pump with large density ratio of liquid to gas [J]. International Journal of Multiphase Flow, 2022, 148: 103936.

- [16] Wang C, Cai J. Numerical simulation of bubble rising behavior in liquid LBE using diffuse interface method [J]. Nuclear Engineering and Design, 2018, 340; p. 219–228.
- [17] Zhao Y, Niu F, Shan Z.Numerical Simulation on Bubble Rising Behavior in Liquid Lead-bismuth Alloy. Atomic Energy Science and Technology, 2015. 49 (Suppl.).
- [18] Li X, Tian W, Chen R, et al. Numerical simulation on single Taylor bubble rising in LBE using moving particle method [J].
 Nuclear Engineering and Design, 2013, 256: 227–234.
- [19] Wang C, Cai J. CFD Studies on a Single Taylor Bubble Rising Behaviors in Liquid LBE Based on Diffuse-interface Method
 [J]. Nuclear Science and Engineering, 2019. 39 (3): 363-372.
- [20] Benamati G, Foletti C, Forgione N, et al. Experimental study on gas-injection enhanced circulation performed with the CIRCE facility [J]. Nuclear Engineering and Design, 2006. 237 (7): 768–777.
- [21] Shi L, Tan B, Wang C, et al. Experimental investigation of gas lift pump in a lead-bismuth eutectic loop [J]. Nuclear Engineering and Design, 2018, 330: 516-523.
- [22] Tarantino M, Agostini P, Benamati G, et al. Integral Circulation Experiment: Thermal-hydraulic simulator of a heavy liquid metal reactor [J]. Journal of Nuclear Materials, 2011, 415 (3): 433-448.
- [23] Schriener TM. El-Genk M S.Gas-lift enhanced natural circulation of alkali and heavy liquid metals for passive cooling of nuclear reactors [J]. International Journal of Multiphase Flow, 2021, 143: 103783.
- [24] Fluent, A. N. S. Y. S. Ansys fluent theory guide [R]. Ansys Inc., USA, 2011, 15317: 724–746.

- [25] Moreau M V, Nrg K Z, Crs S L. CIRCLE experiment: CFD model validation [J] . SESAME deliverable, 2018: 3.
- [26] Ergun S. Fluid flow through packed columns [J]. Chem. Eng. Prog., 1952, 48: 89–94.
- [27] 郝老迷. 核反应堆热工水力学 [M]. 北京: 原子能出版社, 2010.
- [28] Kays W M. Turbulent Prandtl number. Where are we?
 [J]. ASME Transactions Journal of Heat Transfer, 1994, 116 (2): 284–295.
- [29]赵云淦,牛风雷,单祖华.气泡在液态铅铋合金内上升行为 的数值模拟[J].原子能科学技术,2015,49(S1):278-282.
- [30] Grace J. Shapes and velocities of bubbles rising in infinite liquid
 [J] . Transactions of the Institution of Chemical Engineers, 1973, 51: 116–120.
- [31] Grace J R, Wairegi T, Nguyen T H.Shapes and velocities of single drops and bubbles moving freely through immiscible liquids [J]. Chem. Eng. Res. Des., 1976.
- [32] Pacio J, Daubner M, Fellmoser F, et al. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers [J]. Nuclear Engineering and Design, 2016, 301: 111–127.
- [33] Xia F, Liu S, Yu D, et al. CFD analysis of porous flow blockage in a gas-lift enhanced LBE-cooled fuel assembly [J]. Annals of Nuclear Energy, 2023, 190: 109899.
- [34] 王春涛,蔡杰进.基于扩散界面法的液态 LBE 中单个弹状气 泡上升行为 CFD 研究 [J].核科学与工程,2019,39(3): 363-372.
- [35]郝老迷,胡古,郭春秋.沸腾传热和气液两相流动[M]. 哈尔滨:哈尔滨工程大学出版社,2016.

Flow Blockage Phenomenon of LBE-argon Two Phase Flow in a Wire-wrapped Fuel Assembly

Xia Fan^{1,2,3}, Liu Shuyong^{1,*}, Li Taosheng^{1,2}, Mei Huaping¹, Wang Zhen¹, Zhao Jiyun³

(1. Institute of Nuclear Energy Safety Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2. University of Science and Technology of China, Hefei 230026, China;

3. Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China)

Abstract: The flow blockage phenomenon is one of the most important safety issues for wire-wrapped fuel assemblies in lead-based reactors. The LBE-argon two phase flow can occur at bubble-carried free surfaces or in gas-enhanced natural circulations, which may in turn cause local thermal hydraulic change at blockage regions in the assembly. In this paper, numerical models for the 19-pins wire-wrapped fuel assembly are being built using Fluent software, heat transfer and pressure drops of LBE-argon two phase flow are studied under blockage conditions. And the numerical model for two phase flow is validated through comparisons. Parameter-sensitivity analysis are given including the inlet Reynold number, porosities for the blockage regions and bubble diameters. It is concluded that: the behaviors for gas bubbles including escape, dispersion and being sealed. Local pressure increases and overheating are discovered at regions with high volume fraction of gas phase. This work can be a reference of safety analysis for the flow blockage in LBE-cooled fuel assemblies.

Key words: lead based reactors; fuel assembly; flow blockage; two-phase flow; CFD numerical analysis

(责任编辑:许龙飞)

核安全

NUCLEAR SAFETY

徐熙,潘伟龙,谢江红,等. 轴线倾斜条件下核电站推力轴承润滑特性分析[J]. 核安全,2024,23(1):48-55. Xu Xi,Pan Weilong,Xie Jianghong, et al. Analysis of Lubrication Characteristics of Thrust Bearings with Inclined Axis in Nuclear Power Plant [J]. Nuclear Safety,2024,23(1):48-55.

轴线倾斜条件下核电站推力轴承润滑特性分析

徐 熙¹,潘伟龙¹,谢江红¹,何少华¹,范雪晴²,蔡 亮²

(1. 江苏核电有限公司,连云港 222042; 2. 东南大学能源与环境学院,南京 210046)

摘要: 作为核主泵承担轴向负载的关键部件, 推力轴承的润滑性能关系到核电站的安全生 产。由于制造、安装等因素, 推力轴承在实际工作时可能发生轴线倾斜, 影响油膜温度差 场和压力场分布。本文选用油作为润滑剂, 建立推力轴承间隙内的油膜三维物理模型, 利 用 FLUENT 软件开展数值计算, 对倾斜界面推力轴承间隙油膜的温度、压力进行数值模 拟。结果表明, 轴线倾斜造成膜厚分布不均, 轴向上速度梯度发生改变, 造成油膜温度、 压力的变化。当倾斜程度从 0°变化至 0.02°时, 推力轴承最高温度、压力的变化幅度为 100%~155% 和 100%~155%, 轴承油膜最高温度处的动力黏度为平行时的 82.79%。研究结 果对推力轴承在工程实际中的设计与使用具有一定的参考价值。

关键词: 推力轴承; 轴线倾斜; 润滑特性; FLUENT

中图分类号: TK 文献标识码: A 文章编号: 1672-5360(2024)01-0048-08

核主泵是核电站一回路循环系统实现冷 却功能的关键,而主泵的推力轴承则是主泵 中至关重要的部件。当主泵正常工作时,推力 轴承会受到推力盘带来向上的巨大推力;启停 过程中,推力轴承则承载起整个主泵转子系 统的重力^[1]。推力轴承工作时承受较大的载 荷,不可避免地会出现轴瓦瓦面磨损、疲劳剥 落、温度较高引起烧瓦等轴承失效的现象^[2,3]。 对轴承润滑可以有效缓解推力轴承的轴瓦磨 损,极大程度地提高轴承的使用寿命,核电站 主泵止推轴承主要使用油或水进行润滑和冷 却。与油相比,水发生气液相变的压力和温度 临界点较低,比润滑油更容易在温度较低的 情况下或在温度不变、压力突降的情况下发 生空化现象,导致轴瓦磨损^[4],存在安全隐患 并产生财产损失,因此很多核主泵采用油润 滑系统。本文选用油作为润滑介质进行模拟 研究。

在核主泵运行过程中,高转速和大负载的 工作条件往往会造成润滑油温度的升高,当温 度升高较大时会引起润滑液黏度的急剧减少, 影响轴承的承载性能^[5]。开展推力轴承润滑油

液膜温度的研究可以为进一步提升推力轴 承的润滑性能提供科学的指导方向,达到提高 推力轴承的工作性能以及核电站的安全高效运 行的目的。

M.Wasilc Zuk 等^[6]通过对推力轴承的二维、 三维模型进行 CFD 分析,模拟了推力滑动轴承 的速度分布、温度分布以及膜厚分布。张植忠^[7] 对高速重载运行条件下的可倾瓦推力滑动轴承

收稿日期: 2023-12-04 修回日期: 2023-12-26

作者简介: 徐熙(1965—), 男, 高级工程师, 学士, 现主要从事核电厂机械设备维修及技改优化管理工作

展开研究,通过建立研究对象的动力润滑数学 模型并开展数值模拟,计算获得了油膜区域温 度、压力场的改变,在此基础上改变推力轴瓦的 支点安置位置,评估轴承的润滑性能。Xu等^[8] 以高速水润滑径向轴承为研究对象,利用有限 差分法求解模型,分析湍流、惯性及不对中所造 成的倾斜效应对轴承动静特性以及稳定性的影 响。结果表明:倾斜效应改变了轴承承载能力、 刚度、阻尼系数和稳定性。Zhang等^[9]对流体动 压径向轴承展开研究,建立了轴线倾斜条件下 具有表面织构的热弹流体动力学(TEHD)润滑 模型,研究轴承表面结构以及轴线倾斜对径向 轴承润滑性能的影响。结果表明:轴线倾斜时, 轴承选取最佳表面织构能够大大提高轴承的润 滑性能。

在当前对推力轴承的研究中,主要关注平 行界面推力轴承润滑剂液膜温度场和压力场分 布规律。本文通过模拟,研究轴线倾斜条件下 的推力轴承润滑特性,全面分析推力轴承在不 同工况下的性能特征。

1 物理模型

本文研究的推力轴承为双面开槽推力轴 承,止推盘上沿圆周方向均匀分布若干推力 轴瓦,推力轴瓦的瓦基材料通常为不锈钢,瓦 面的材料一般为石墨。推力盘表面由若干纯 碳石墨瓦组成,纯碳石墨盘嵌入不锈钢板之 中,在推力盘表面形成冷却槽,其结构如图1 所示。

图 1 止推盘与推力盘结构 Fig.1 Structure diagram of thrust disc and thrust disc

止推盘和推力盘各结构的参数见表1。本 文对止推盘和推力盘间隙内油膜的物理模型进 行三维构建,用于数值模拟计算。

	表 1	推力盘及止推盘儿何参数
Table 1	Geor	netric parameters of thrust disc and

thrust disc

推力盘几何参数		止推盘几何参数	
瓦块外径 R/mm	75	瓦块外径 R/mm	75
瓦块内径 r/mm	57.5	瓦块内径 r/mm	57.5
槽数 N	8	槽数 N	16
槽深 h/mm	0.3	槽深 h/mm	0.3
槽宽角 φ/(°)	6	槽宽角 φ/(°)	6
油膜间隙 H/mm	0.08		

2 数值模拟

2.1 控制方程

由于轴承间隙内的油膜厚度较薄,工作时 以层流状态为主,本文考虑将 N-S 方程简化为 雷诺方程。分析油膜特性时,油膜黏度随温度 变化而不断变化,在研究过程中还应考虑能量 转换。为了获得轴承间隙油膜特性,必须同时 求解连续性方程、动量方程和能量方程。

连续性方程为:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0 \tag{1}$$

式中, ρ 是密度,kg/m³;t是时间,s;u是速度 矢量,m/s。

油膜可以看作稳定的不可压缩流体,密度 值保持不变,为常数。连续性方程可变换为:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
(2)

式中,*u*,*v*,*w*分别是在*x*,*y*,*z*方向上的三个 速度分量,单位为 m/s。

动量方程为:

$$\frac{\partial}{\partial t}(\rho u) + div(\rho u) =$$

$$-grad(p) + div(\mu grad(u)) + \rho g$$
(3)

式中,p为油膜压力, $Pa;\mu$ 为油膜的动态黏度, $Pa \cdot s;g$ 为重力加速度, m/s^2 。

能量方程为:

$$\frac{\partial(\rho t)}{\partial t} + \frac{\partial(\rho ut)}{\partial x} + \frac{\partial(\rho ut)}{\partial y} + \frac{\partial(\rho ut)}{\partial z} = \frac{\partial}{\partial x} \left(\frac{k}{c_p} \frac{\partial t}{\partial x}\right) + \frac{\partial}{\partial y} \left(\frac{k}{c_p} \frac{\partial t}{\partial y}\right) + \frac{\partial}{\partial z} \left(\frac{k}{c_p} \frac{\partial t}{\partial z}\right) + S_T$$
(4)

式中, c_p 为比热容,J/(kg·℃);k为传热系数; S_T 是由于黏性效应机械能转换为热能的耗散函数。

2.2 边界条件

本文运用流体动力学模拟软件 FLUENT 模 拟平行界面及倾斜界面油膜的温度分布和压力 分布,对油膜几何模型进行结构化网格划分,并 进行无关性验证。止推盘和推力盘存在相对旋 转,间隙内一部分流体随推力盘做旋转运动,一 部分流体被束缚在止推盘表面。针对该模型有 相对位移的流动问题,本文选用动网格模型。

油膜与推力盘的接触表面设置逆时针旋

转,转速设定为 1440 r/min,油膜与止推盘接触 表面设置为静止壁面,润滑油进口为压力入口, 压力值为 0.2 MPa,入口温度为 300 K;压力出口 的压力值设为 0,温度值初设为 300 K。

3 计算结果分析

3.1 平行界面温度与压力分布

本文以推力盘和止推盘沟槽完全重合为起始 位置,选择推力盘旋转0°、3°、6°、11.5°、16.5°、19.5° 六个时刻处的温度和压力模拟结果进行分析。

平行界面温度分布如图2所示,沿径向方向上,由于角速度一定时,半径越大线速度越

Fig.2 Schematic diagram of temperature distribution at parallel interfaces

大,因此半径较大处所造成的速度梯度较大,产 生黏性耗散热较多,温度分布随着半径的增大 呈现温度逐渐升高的趋势。当供给入推力轴承 间隙内润滑油的压力一定时,在推力盘和止推 盘的沟槽区域,流通面积更大,流量增大、流速 增加,沟槽区域的液膜径向流速增大,因此在油 膜上沟槽区的温度较低于无沟槽区域。

由于推力盘沟槽数为止推盘沟槽数的两 倍,当不存在推力盘与止推盘沟槽重合时,在计 算周期内(6°~16.5°),如图2(d)所示,相邻两 个止推盘 a、b 沟槽间始终存在两个推力盘沟槽, 一个推力盘 c 沟槽沿转速方向即将与止推盘 a 沟槽重合,另一推力盘 d 沟槽随着推力盘的旋 转逐渐远离止推盘 b 沟槽,油膜最高温度出现 在 c 沟槽沿转速方向的沟槽侧靠近外边缘处。 d 沟槽沿转速方向的沟槽侧温度也为周围区域 的温度最高值,由于经历了 b 沟槽的冷却,该处 的温度值较低于 c 沟槽处。

平行界面压力分布如图 3 所示。径向方向 上,与单面开槽的旋转模型变化趋势相一致,随

Fig.3 Schematic diagram of pressure distribution at parallel interfaces

着半径的增大,压力值呈逐渐降低的趋势。周 向方向上,压力分布大致呈周期性变化,沟槽两 侧的压力分布不同,沟槽的逆时针侧压力远大 于沟槽顺时针侧。同一半径处,沟槽区压力沿 顺时针方向逐渐减小,非沟槽区压力沿顺时针 方向递增。当存在沟槽重合现象时,推力盘沟 槽非重合区域、重合区域、止推盘非重合区域的 压力连续平缓变化,同一半径处,沿顺时针方向 压力逐渐减少。

3.2 轴线倾斜界面温度分布

根据核电运行工况,本文对轴线倾斜

0.005°、0.01°、0.015°和0.02°四种状态进行模拟。模拟工况较多,四种倾斜状态下,轴线倾斜 所造成的影响具有一致性,且随着倾斜的加剧 逐渐显现,本文以倾斜0.02°数值模拟结果为例, 与平行界面对比分析。

在径向方向上,油膜温度随着半径的增大而 升高,周向上液膜较厚的沟槽区温度要低于液膜 厚度较薄的非沟槽区域,当存在推力盘沟槽与止 推盘沟槽重合时,推力盘非重合区域沟槽、重合 区域沟槽、止推盘非重合区域沟槽温度分布规律 与平行时一致。由于轴线偏斜所造成图4中油

图 4 倾斜 0.02°时温度分布 Fig.4 Temperature distribution map at an inclination of 0.02°

膜左右半区的厚度变化相反,左侧油膜厚度减 少,右侧油膜厚度增加,引起两区域黏性耗散热 的增加或减少,使得油膜的温度沿周向的周期 性分布规律被打破,但每两个止推盘沟槽间沟 槽区域以及非沟槽区域的油膜温度沿周向的 变化规律与平行界面的变化规律相同。液膜 厚度降低区域的各时刻温度与平行界面相应 时刻相比普遍升高,液膜厚度增加的区域各时 刻温度与平行界面相应时刻比普遍降低,且随 着倾斜角度的增大,轴线倾斜所引起的温度变 化幅值越大,引起的温度分布左右不均现象越 剧烈。

Fig.5 Comparison of maximum temperatures between parallel and inclined interfaces

Fig.6 Dynamic viscosity variation diagram of lubricating oil

由图 5 和图 6 可知,当轴线倾斜程度为 0.005°、0.01°、0.015°、0.02°时,油膜最高温度的 升高幅度分别是平行时的118.74%、128.47%、 140.32%和154.51%。平行时的最高温度为 309.87 K,轴线倾斜0.02°时,最高温度达到了 315.25 K,最高温度低于单面开槽油膜的最高温 度。最高温度处油膜的动力黏度分别为平行时 的93.71%、90.61%、86.96%和82.79%。

3.3 轴线倾斜界面压力分布

如图 7 所示,在径向方向,倾斜界面下油膜 压力随着半径的增大不断减小,由于轴线倾斜 的存在,周向方向的压力分布的周期性变化规 律被打破,但每两个止推盘沟槽间隙间沟槽区 域以及非沟槽区域的油膜压力沿周向的变化规 律与平行界面的变化规律相同。当发生推力盘 与止推盘沟槽重合时,重合区域以及邻近的止 推盘、推力盘沟槽的非重合区域的压力分布改 变也与平行界面相似。轴线倾斜引起润滑油上 下半区沿转速流通截面面积发生变化,造成上 下半区压力分布的改变,上半区域的压力值较 平行界面有所升高,下半区域较平行界面有所 降低,这种压力的改变随着轴线倾斜程度的增 加而增大。

如图 8 所示,当轴线倾斜程度为 0.005°、 0.01°、0.015°、0.02°时,油膜最高压力的升高幅 度分别是平行时的 112.22%、124.38%、138.44% 和 155.16%,较平行时油膜的最高压力为 237.63 kPa,轴线倾斜 0.02°时,最高压力达到了 258.38 kPa。

4 结论

本文建立了推力盘和止推盘均开有冷却槽 时平行界面与轴线倾斜界面油膜的三维物理模 型,对油膜进行网格划分。利用流体动力学仿 真软件 FLUENT,对平行界面和轴系倾斜两种 工作所构成的油膜流场进行了数值仿真模拟, 获得了流场的压力分布和温度分布,并分析了 油膜流场温度分布和压力分布随轴线倾斜角度 的变化规律。

(1) 对平行界面研究发现: 轴线未发生倾斜

图 7 倾斜 0.02°时压力分布 Fig.7 Pressure distribution diagram at an inclination of 0.02°

Fig.8 Comparison of maximum pressure between parallel and inclined interfaces

时,径向方向,油膜温度随半径增加而上升,压 力随半径增大而降低;周向方向,温度和压力沿 周向呈现周期性变化规律,沟槽区的油膜温度 较低于非沟槽区,沟槽两侧压力存在差异,受挤 压侧压力大于另一侧,非沟槽区温度沿转速方 向递增,压力则递减。

(2)对倾斜界面研究发现:轴线倾斜会造成 油膜温度、压力分布的改变,当倾斜程度从0°变 化至0.02°时,双面开槽的推力轴承最高温度、 压力的变化幅度在100%~155%和100%~155% 的范围内变化。当倾斜0.02°时,油膜最高温度 处的动力黏度为平行时的82.79%。

(3) 当核主泵轴线倾斜时, 润滑油膜分布不

均匀,最大温度及最高压力上升,油膜动力黏度 下降,导致轴承与其他机械部件的摩擦增加。 核电站实际运行中,应定期检查维护润滑系统, 监测核主泵轴线倾斜状况并及时调整。

参考文献

- [1]高亚珍.核动力装置用泵 [M].哈尔滨:哈尔滨工程大学出版社,2009.
- [2]齐朝杰,王平原,申玄伟,等.滑动轴承的概述[J].科技资讯,2014,12(10):81.
- [3] 刘奇.大型水润滑推力轴承承载性能及推力瓦型面优化研究 [D].太原:中北大学,2013.
- [4] 孟晋,王祥,安宁,等.WWER1000机组核主泵水润滑轴承 工作原理及问题分析[J].机械工程师,2017,(6):131-133.

- [5] 唐乾皓. 轴封式核主泵推力轴承流热分析及优化 [D]. 成都: 西华大学, 2020.
- [6] Wasilczuk M, Rotta G. Modeling lubricant flow between thrustbearing pads [J]. Tribology International, 2007, 41 (9): 908–913.
- [7]张植忠.核主泵推力滑动轴承流体动力润滑分析与实验研究 [D].长沙:湘潭大学,2015.
- [8] XU B, GUO H, WU X F, et al. Static and dynamic characteristics and stability analysis of high-speed waterlubricated hydrodynamic journal bearings [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236 (4): 701-720.
- [9] ZHANG Yu, CHEN Guoding, WANG Lin.Thermoelastohydrodynamic analysis of misaligned bearings with texture on journal surface under high-speed and heavy-load conditions [J]. Chinese Journal of Aeronautics, 2019, 32 (5): 1331–1342.

Analysis of Lubrication Characteristics of Thrust Bearings with Inclined Axis in Nuclear Power Plant

Xu Xi¹, Pan Weilong¹, Xie Jianghong¹, He Shaohua¹, Fan Xueqing², Cai Liang²

(1. Jiangsu Nuclear Power Co., Ltd., Lianyungang 222042, China; 2. School of Energy and Environment, Southeast University, Nanjing 210046, China)

Abstract: As a key component of the nuclear main pump to bear the axial load, the lubrication performance of thrust bearings is related to the safety production of nuclear power plant. During actual operation, thrust bearings may experience axis tilt due to manufacturing, installation, and other factors, which can affect the distribution of oil film temperature difference and pressure field. In this paper, oil is selected as the lubricant, a three–dimensional physical model of oil film in thrust bearing clearance is established, and the temperature and pressure of oil film in thrust bearing clearance are numerically simulated by using FLUENT software. The results indicate that the tilt of the axis causes uneven distribution of film thickness, changes in velocity gradient along the axis, and changes in oil film temperature and pressure. When the inclination degree changes from 0° to 0.02° , the maximum temperature and pressure changes of the thrust bearing are 100%-155% and 100%-155%, and the dynamic viscosity at the highest temperature of the bearing oil film is 82.79% of that when parallel. The research results have certain reference value for the design and use of thrust bearings in engineering practice.

Key words: thrust bearing; axis inclination; lubrication characteristics; FLUENT

(责任编辑:许龙飞)

核安全

NUCLEAR SAFETY

于稼卵.β衰变型自给能堆芯中子探测器灵敏度 K 因子研究[J].核安全,2024,23(1):56-80. Yu Jiasi. Study on Sensitivity K Factor of Self-powered Detector with β Decay [J]. Nuclear Safety,2024,23(1):56-80.

β衰变型自给能堆芯中子探测器灵敏度K因子研究

(第一篇:理论分析、计算模型及计算结果)

于稼驷

(中华人民共和国生态环境部,北京 100006)

摘要:本文对β衰变型自给能堆芯中子探测器灵敏度K因子进行了较全面、深入、系统 的研究,建立了热中子灵敏度K因子、超热共振中子灵敏度K因子、中子场全谱中子灵 敏度K因子的完整理论体系,给出了计算这些K因子的数学模型及公式,并提供了各K 因子的计算结果,论证了探测器的轻水堆K因子与重水堆K因子的关系。通过与其他文 献发表的灵敏度K因子进行比较,验证了本文提出的灵敏度K因子理论模型是科学的, 本文给出的灵敏度K因子计算结果是可信的。

关键词: 自给能; 探测器; 灵敏度; k因子

中图分类号: TL375.4 文章标志码: A 文章编号: 1672-5360(2024)01-0056-25

中子灵敏度是自给能探测器的核心参数, 国内外很多文献对β衰变型自给能探测器中子 灵敏度进行了探讨、分析、研究^[1-6]。其中参考 文献[4]~[6]引用了美国原子能委员会出版 的《核动力堆仪表系统手册》^[7]提供的自给能 探测器中子灵敏度K因子,并以此为基础,对 自给能中子铑、钒探测器灵敏度进行了分析、研 究、计算。

中子灵敏度 K 因子研究是灵敏度研究的基础。许多文献^[1,2,7]在研究探测器灵敏度时,也都涉及一些灵敏度 K 因子的研究。但这些文献提供的 K 因子研究存在不足:(1)只涉及热中子灵敏度 K 因子,未考虑超热中子对铑探测器灵敏度的贡献及其相关 K 因子,未涉及中子场全谱中子 K 因子;(2)只涉及部分灵敏度 K 因子研究,而非全面、系统的研究。本文试图对灵敏度

K因子进行全面、深入、系统的研究。

β 衰变型自给能探测器主要指铑和钒自给 能探测器。本文重点分析铑自给能中子探测器 K 因子。钒的中子俘获截面符合 1/v 率,钒自给 能中子探测器(以下简称钒探测器)的灵敏度 K 因子计算模型与铑自给能中子探测器(以下简 称铑探测器)的热中子灵敏度 K 因子计算模型 相同。

1 探测器灵敏度和灵敏度 K 因子

1.1 灵敏度

灵敏度是本论文的核心概念,为了便于论 述,现定义两个灵敏度术语如下:

探测器灵敏度:整个探测器单位中子注量 率输出电流。

探测器单位长发射体灵敏度:与单位长(1 cm,

收稿日期: 2023-08-30 修回日期: 2023-10-16

作者简介:于稼驷(1942—)男,高级工程师,本科,现主要从事核安全和堆芯中子探测器研究工作

下同)发射体相对应的那部分探测器灵敏度的简称。如果探测器灵敏度为*I*,探测器发射体长度为*L*,那么,探测器单位长发射体灵敏度为*I*/*L*。

1.2 灵敏度 K 因子

把自给能中子探测器放在稳定的典型热堆 中子场中,在平衡状态,发射体单位时间放出的 β 粒子数等于其俘获的中子数,本文称这样的 状态为"稳定平衡态"。发射体放出的β粒子在 穿越发射体过程中损失能量,以一定的概率逃 脱发射体。逃脱发射体的β粒子,只有穿越绝 缘区空间电荷电势峰才能对探测器灵敏度有贡 献^[1,8]。因此,所谓探测器灵敏度K因子研究, 就是研究影响探测器灵敏度的各种因素,如中 子自屏因子、中子注量率降低因子,中子诱发的 β 粒子逃脱发射体的概率, 逃脱发射体的 β 粒 子穿越绝缘体空间电荷电势峰的概率,以及中 子诱发的 B 粒子逃离发射体,并穿越绝缘体空 间电荷电势峰,成为对探测器输出电流有贡献 的电子的概率等。探测器灵敏度 K 因子是一组 无量纲 K 系数,它与探测器的几何尺寸、材料及 所处的中子场环境、慢化剂环境等有关。

2 铑探测器灵敏度 K 因子数学模型、 计算公式

2.1 铑探测器全谱中子屏降综合因子 K_{fF}

2.1.1 发射体中子俘获率和全谱中子屏降综合 因子 K_{fF} (Full spectrum neutron self-shielding and depression comprehensive factor)

从参考文献[3]式(6)知,单位长铑发射体 中子俘获率的计算公式如下:

$$A = f_1 F_1 n v_0 N_1 \sigma_0 g + f_2 F_2 n v_0 N_1 \sigma_0 r \sqrt{T/T_0} s_0$$

= $n v_0 N_1 \sigma_0 (f_1 F_1 g + f_2 F_2 r \sqrt{T/T_0} s_0)$ (1)

其中, nv_0 :Westcott中子注量率; σ_0 :¹⁰³Rh 热中子(2200 m·s⁻¹,下同)微观吸收截面;g、s: ¹⁰³Rh 的 Westcott 因子; $r\sqrt{T/T_0}$:中子谱超热参 数,简称超热参数; $s_0=s$ (20°C); N_1 :单位长发射 体¹⁰³Rh 的核子数; f_1 :发射体热中子自屏因子; F_1 :发射体热中子注量率降低因子; f_2 :发射体 超热共振中子自屏因子; F_2 :发射体超热共振中 子注量率降低因子。

单位长铑发射体中子俘获率还可以用下式 表示:

$$A = K_{fF} n v_0 N_1 \sigma_0 \left(g + r \sqrt{T/T_0} S_0 \right)$$
 (2)

比较式(1)和式(2),可得:

$$K_{fF} = \frac{f_1 F_1 g + f_2 F_2 r \sqrt{T/T_0} s_0}{\left(g + r \sqrt{T/T_0} S_0\right)}$$
(3)

从文献[10]知,单位长铑发射体中子俘获 率还可以用下式表示:

$$A = N_1 \int_0^\infty f(v) F(v) \sigma(v) n(v) v dv \qquad (4)$$

比较式(2)和式(4),可得:

$$K_{fF} = \frac{\int_{0}^{\infty} f(v) F(v) \sigma(v) n(v) v dv}{nv_{0}\sigma_{0} (g + r \sqrt{T/T_{0}}S_{0})}$$
(5)

其中,f(v):发射体速度为v的中子的自屏 因子;F(v):发射体速度为v的中子的中子注量 率降低因子; $\sigma(v)$:¹⁰³Rh速度为v的中子的微观 吸收截面;n(v):速度为v的中子的密度;v:中子 速度,其他同上。

2.1.2 K_F的物理内涵

式(3)和式(5)从不同角度表达了 K_{f} 的物 理内涵。 K_{f} 体现了全谱中子场的中子自屏效应 和中子注量率降低效应的综合结果,既包括热 中子的效应,也包括超热共振中子效应。此外, K_{f} 还随着超热参数的变化而变化。可以把 K_{f} 称为探测器全谱中子屏降综合因子。

假定一根无限细的铑丝和一个铑探测器发 射体放在相同的典型热堆中子场中。由式(4)知, 式(5)的分子表示发射体中一个¹⁰³Rh核子单 位时间内俘获中子的概率($P_{\xi ghk}$)。由文献[3] 的式(5)知,本文式(5)的分母表示无限细铑丝 中一个¹⁰³Rh核子单位时间内俘获中子的概率 (P_{K49842})。那么, $K_{fr}=P_{\xi ghk}/P_{K49842}$ 。

同上,仍然假定一根无限细的铑丝和一个 铑探测器发射体放在相同的典型热堆中子场 中。铑丝的¹⁰³Rh的核子数为N'。假定在发射 体中做一个横向切片A(见图1),切片与发射体 轴向垂直,切片厚度均匀,切片中¹⁰³Rh的核子 数也为 N'。再假定,稳定平衡态,铑丝单位时间 吸收 100 个中子。那么,发射体切片 A 单位时 间吸收 100·K_f 个中子。这是对 K_f 物理内涵的 最直白解读。

铑发射体及横向切片 A

无限细铑丝

图 1 铑发射体和无限细铑丝

2.1.3 K_{fF}解析

式(3)中,当r=0时, $K_{fr}=f_1F_1$,这类似于热 堆反射层孔道的中子场环境。当中子场中没 有热中子,只有超热中子时,r趋于无穷,这时, $K_{fr}=f_2F_2$;这样的中子场在反应堆中是不存在 的,但用包镉的方法,可以近似模拟这样的中子 场环境。因此 f_1F_1 、 f_2F_2 是特定中子场环境下的 K_{fr} ,是 K_{fr} 的延伸。这里r是中子谱超热指数, 是中子谱超热中子比例的量度^[9]。

2.2 铑探测器 K_{β 有效}因子

全谱中子 β 有效因子 $K_{\beta \bar{\alpha} \bar{\alpha}}$ (Full spectrum neutron β effective factor, K_{Beffe})是指中子场全谱 中子诱发的β粒子,逃离发射体,并穿越绝缘体 空间电荷电势峰,成为对探测器输出电流有贡 献的电子的概率。热中子β有效因子K_{热β α效} (Thermal neutron β effective factor, $K_{\text{ther Beffe}}$) \neq 指热中子诱发的β粒子,逃离发射体,并穿越绝 缘体空间电荷电势峰,成为对探测器输出电流 有贡献的电子的概率。超热共振中子β有效 因子 $K_{\mathrm{H振 B}\,\bar{q}\,\bar{\alpha}}$ (Epi.thermal resonance neutron β effective factor, K_{epi,ther,reson,Beffe})是指超热共振中 子诱发的β粒子,逃离发射体,并穿越绝缘体空 间电荷电势峰,成为对探测器输出电流有贡献 的电子的概率。 $K_{\mathtt{Z}\mathtt{K}_{B}}$, $K_{\mathtt{Z}\mathtt{K}_{B}}$, $K_{\mathtt{Z}\mathtt{K}_{B}}$, $K_{\mathtt{Z}\mathtt{K}_{B}}$,你们不可以任何的问题,你们不可以在这些问题,我们不可以在这些问题,我们就不是这些问题,我们就不是这些问题,我们就不是这些问题。 假定 K_{B 有效}=0.56,那么在稳定平衡态,发射体单 位时间每吸收100个中子,就会发射100个 β 粒子;这100个β粒子中,只有56个β粒子能 够逃离发射体,并穿越绝缘体空间电荷电势峰, 成为对探测器输出电流有贡献的电子。

2.2.1 $K_{\pm\beta \bar{\eta}g\chi}$ 、 $K_{\Xi \pm \beta \bar{\eta}g\chi}$ 数学模型

从文献[3]式(21)知,单位长发射体的灵敏 度可以用下式表示:

$$I = a + br \sqrt{T/T_0}$$

$$a = e\pi r_e^2 f_1 F_1 N \sigma_0 g$$

$$\int_{E_0}^{E_\beta} \left\{ P(E) \left(-\frac{dE}{dx} \right)_E^{-1} \int_E^{E_\beta} N_1 \left[R(E') - R(E) \right] B(E') dE' \right\} dE$$

$$b = e\pi r_e^2 f_2 F_2 N \sigma_0 s_0$$

$$\int_{E_0}^{E_\beta} P(E) \left\{ \left(-\frac{dE}{dx} \right)_E^{-1} \int_E^{E_\beta} N_2 \left[R(E') - R(E) \right] \frac{B(E')}{2} dE' + \frac{B(E)}{2} \right\} dE$$
(6)

其中, $\left(-\frac{dE}{dx}\right)_{E}^{-1}$:能量为 *E* 的 β 粒子在发射 体里的比能量损失的倒数; *N*₁ [*R*(*E'*) –*R*(*E*)] 即 *N*₁(*l*):柱体体内均匀、各向同性源径迹长度概 率函数; *N*₂ *R*(*E'*) –*R*(*E*)]即 *N*₂(*l*):柱体表面均匀、 各向同性源径迹长度概率函数; *P*(*E*):在发射体 表面能量为 *E* 的 β 粒子穿越绝缘体空间电荷电 势峰概率; *R*(*E*):能量为 E 的 β 粒子在发射体材 料中的射程; *B*(*E'*):¹⁰⁴Rh 衰变放出的 β 粒子谱; *E*_β: *B*(*E'*) 中 *E'* 的最大值; *E*₀:穿越(*r*₀–*r*_e) 厚绝 缘体所需 β 粒子能量; *r*₀:绝缘体空间电荷电势 峰面半径; *r*_e: 发射体半径; *e*:电子电量; *N*:单位 体积发射体¹⁰³Rh 的核数; 其他符号同上。

注意,上述公式中的 $\pi r_e^2 N$ 等同于式(1)中的 $N_{1\circ}$

从文献[3]式(7)知,探测器单位长发射体 灵敏度,还可用下式表示:

$$I = eK_{\pm\beta\beta\bar{\alpha}\underline{\beta}}f_1F_1\pi r_e^2 N\sigma_0 g + eK_{\underline{\alpha}\underline{\beta}\underline{\beta}\underline{\alpha}\underline{\beta}}f_2F_2\pi r_e^2 N\sigma_0 r \sqrt{T/T_0}s_0$$
(7)

其中,只有 $r_{\sqrt{T/T_0}}$ 是变量,其他为常量。因此,式(7)可变为:

$$I = a + br \sqrt{T/T_0}$$
(8)

$$\ddagger \psi, a = eK_{\$\$\beta \pi \&} f_1 F_1 \pi r_e^2 N \sigma_0 g$$

$$b = eK_{\underline{u}\underline{k}\beta\underline{n}\underline{n}\underline{w}}f_{2}F_{2}\pi r_{e}^{2}N\sigma_{0}s_{0}$$

$$\text{EV较式 (8) 和式 (6), 可得:}$$

$$K_{\underline{k}\beta\underline{n}\underline{w}} = \int_{E_{0}}^{E_{\beta}} \left\{ P(E) \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' \right\} dE$$

$$(9)$$

$$K_{\mathfrak{K}_{\mathfrak{K}_{\beta}}} = \int_{E_{0}}^{E_{\beta}} P(E) \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{2} \left[R(E') - R(E) \right] \frac{B(E')}{2} dE' + \frac{B(E)}{2} dE \right\} dE$$
(10)

2.2.2 K_{β 有效}计算公式

从式(1)及 $K_{\beta \, \bar{n} \bar{N}}$ 定义知,单位长发射体的 灵敏度还可以用下式表示:

$$I = K_{\beta \bar{\eta} \bar{\chi}} e(f_1 F_1 \pi r_e^2 N \sigma_0 g + f_2 F_2 \pi r_e^2 N \sigma_0 r \sqrt{T/T_0} s_0)$$
(11)
= $e K_{\beta \bar{\eta} \bar{\chi}} \pi r_e^2 N \sigma_0 (f_1 F_1 g + f_2 F_2 r \sqrt{T/T_0} s_0)$

比较式(11)和式(7),可得:

$$K_{\beta\bar{n}\bar{\alpha}\bar{\alpha}} = \frac{K_{\pm\beta\bar{n}\bar{\alpha}\bar{\alpha}}f_{1}F_{1}g + K_{\pm\bar{\mu}\bar{\mu}\bar{\beta}\bar{n}\bar{\alpha}\bar{\alpha}}f_{2}F_{2}r\sqrt{T/T_{0}}s_{0}}{f_{1}F_{1}g + f_{2}F_{2}r\sqrt{T/T_{0}}s_{0}}$$
(12)

参照 2.1.3 节知,式(12) 中 K_{热β 有效}、K_{超振β 有效} 是特定中子场环境下的 K_{β 有效},是 K_{β 有效}的延伸。

2.3 铑探测器 K_{β 逃脱}因子

全谱中子 β 逃脱因子 $K_{\beta \, \underline{u} \underline{N}}$ (Full spectrum neutron β escape factor, $K_{\beta \, \underline{e} \underline{n}}$) 是指全谱中子场 中子诱发的 β 粒子逃离发射体的概率。热中子 β 逃脱因子 $K_{\underline{n}_{\beta \, \underline{u} \underline{N}}}$ (Thermal neutron β escape factor, $K_{\text{ther},\beta \, \underline{e} \underline{c}}$.) 是指热中子诱发的 β 粒子逃 离发射体的概率。超热共振中子 β 逃脱因子 $K_{\underline{a}\underline{K}_{\beta \, \underline{u}\underline{N}}}$ (Epi.thermal resonance neutron β escape factor, $K_{\text{epi.therreson},\beta \, \underline{e} \underline{c}}$.) 是指超热共振中子诱发的 β 粒 子逃离发射体的概率。 $K_{\underline{a}\underline{K}_{\beta \, \underline{u}\underline{N}}}$ 是 $K_{\underline{a}\underline{k},\underline{k}_{\beta \, \underline{u}\underline{N}}}$ 的 简称。

$$K_{\text{ABBBB}} = \int_{0}^{E_{\beta}} C_{1}(E) dE = \int_{0}^{E_{\beta}} \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \right\}_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' dE' dE$$
(13)

(2) K_{超振β逃脱}数学模型。

从文献[3]式(13)知,铑发射体吸超热 共振中子后放出的β粒子逃离发射体表面 时的能量分布叫超热共振逃脱谱,可用下式 表示:

$$C_{2}(E) = \left(-\frac{dE}{dx}\right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{2} \left[R(E') - R(E)\right] \frac{B(E')}{2} dE' + \frac{B(E)}{2}$$
(14)

同理,

(3) 文献[3]中, 计算出了绝缘体厚度为零的探测器灵敏度。绝缘体厚度为零, 意味着逃 离发射体的 β 粒子都能穿越空间电荷电势峰, 这样, 式(9) 和式(10)中, $P(E)=1, E_0=0$; 绝缘 体厚度为零, 还意味着逃离发射体的 β 粒子都 能成为对探测器输出电流有贡献的电子, 因此 $K_{\beta \, B M} = K_{\beta \, f q \infty}$ 。这样可得:

$$K_{\underline{A}\underline{\beta}\underline{\beta}\underline{B}\underline{B}} = K_{\underline{A}\underline{\beta}\underline{\beta}\underline{\beta}\underline{M}} = \int_{0}^{E_{\beta}} \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' \right\} dE$$
(16)

$$K_{\underline{B}\underline{K}\beta\underline{B}\underline{R}\underline{R}} = \int_{0}^{E_{\beta}} \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{2} \left[R(E') - R(E) \right] \\ \frac{B(E')}{2} dE' + \frac{B(E)}{2} \right\} dE$$
(17)

式(16)和式(13)相同,式(17)和式(15) 相同。

2.3.2 K_{β 逃脱}

$$N_{\beta} = K_{\underline{\mathsf{M}}\beta\underline{\mathscr{B}}\underline{\mathsf{M}}} f_{1} F_{1} \pi r_{e}^{2} N \sigma_{0} n v_{0} g + K_{\underline{\mathsf{M}}\underline{\mathsf{M}}\beta\underline{\mathscr{B}}\underline{\mathsf{M}}} f_{2} F_{2} \pi r_{e}^{2} N \sigma_{0} n v_{0} r \sqrt{T/T_{0}} s_{0}$$

$$= \pi r_{e}^{2} N \sigma_{0} n v_{0} \left(K_{\underline{\mathsf{M}}\beta\underline{\mathscr{B}}\underline{\mathsf{M}}} f_{1} F_{1} g + K_{\underline{\mathsf{M}}\underline{\mathsf{H}}\underline{\mathsf{R}}\underline{\mathsf{H}}\underline{\mathsf{M}}} f_{2} F_{2} r \sqrt{T/T_{0}} s_{0} \right)$$

$$(18)$$

据上述K_{B 速脱}的定义,中子场中子单位时间 在单位长发射体中诱发的β粒子,穿越发射体, 到达发射体表面, 且逃离发射体的 β 粒子数还 可以用下式表示:

$$N_{\beta} = K_{\beta \not\equiv B \not\equiv} (f_{1}F_{1}\pi r_{e}^{2}N\sigma_{0}nv_{0}g + f_{2}F_{2}\pi r_{e}^{2}N\sigma_{0}nv_{0}r \sqrt{T/T_{0}}s_{0})$$

$$= K_{\beta \not\equiv B \not\equiv} \pi r_{e}^{2}N\sigma_{0}nv_{0}(f_{1}F_{1}g + f_{2}F_{2}r \sqrt{T/T_{0}}s_{0})$$
(19)

比较式(18)和式(19),可得:

$$K_{\beta \& l \ddot{m}} = \frac{K_{\underline{x}\beta \& \underline{m}} f_1 F_1 g + K_{\underline{z}\underline{x}\beta \& \underline{m}} f_2 F_2 r \sqrt{T/T_0} s_0}{f_1 F_1 g + f_2 F_2 r \sqrt{T/T_0} s_0} (20)$$

参照 2.1.3 节,式(20) 中,K_{热 B 逃脱}、K_{超振 B 逃脱} 是特定中子场环境下的 K_{B 逃脱},是 K_{B 逃脱}的延伸。

2.4 铑探测器 K_{β 穿越}因子

全谱中子 β 穿越因子 $K_{\beta \, gai}$ (Full spectrum neutron β cfactor, $K_{\beta, cross.}$) 是指中子场中子诱发 的且已逃离发射体的β粒子,穿越绝缘体空间 电荷电势峰,成为对探测器输出电流有贡献的 电子的概率。热中子 β 穿越因子 $K_{\text{热B 穿越}}$ (Thermal neutron β cfactor, $K_{\text{ther }\beta \text{ cross}}$)是指热中子诱发的 且已逃离发射体的β粒子,穿越绝缘体空间电 荷电势峰,成为对探测器输出电流有贡献的电 子的概率。超热共振中子 β 穿越因子 $K_{affe \beta gai}$ (Epi. thermal resonance neutron β crossing factor, $K_{\text{epi,ther,reson, \beta, cross}}$)是指超热共振中子诱发的且已逃 离发射体的β粒子,穿越绝缘体空间电荷电势 峰,成为对探测器输出电流有贡献的电子的概 率。K_{超振 B 穿越}是 K_{超热共振 B 穿越}的简称。 2.4.1 K_{热岛穿越}数学模型

结合上述
$$K_{\underline{k}_{\beta}\bar{q}\bar{\alpha}}$$
和 $K_{\underline{k}_{\beta}\bar{\mu}\underline{w}\underline{w}}$ 定义,可得:
 $K_{\underline{k}_{\beta}\bar{q}\bar{\alpha}} = K_{\underline{k}_{\beta}\underline{w}\underline{w}}K_{\underline{k}_{\beta}\underline{\sigma}\underline{w}}$ (21)

$$K_{\underline{\mathfrak{R}}\beta\bar{\gamma}\underline{\mathfrak{k}}} = \frac{K_{\underline{\mathfrak{R}}\beta\bar{\eta}\underline{\mathfrak{k}}}}{K_{\underline{\mathfrak{R}}\beta\underline{\mathfrak{k}}\underline{\mathfrak{R}}}} = \frac{\int_{E_{0}}^{E_{\beta}} \left\{ P(E) \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' \right\} dE}{\int_{0}^{E_{\beta}} \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' \right\} dE}$$
(22)

2.4.2 K 超振 B 穿越数学模型

结合上述 K ## 6 有效和 K ## 6 兆 定义,可得:

结合上述 $K_{\beta \bar{q} \bar{\chi}}$ 、 $K_{\beta \bar{g} \bar{k}}$ 和 $K_{\beta \bar{\mu} \bar{k} \bar{k}}$ 定义,可得: $K_{\beta a \phi} = K_{\beta W W} K_{\beta \varphi a \phi}$

$$K_{\mathrm{aff}\beta f \mathrm{d}} = K_{\mathrm{aff}\beta \mathrm{d} \mathrm{B}} K_{\mathrm{aff}\beta \mathrm{f} \mathrm{d} \mathrm{f}}$$
(23)

$$K_{\mathfrak{A}_{\mathfrak{K}\beta}\mathfrak{F}^{\mathfrak{K}}\mathfrak{K}} = \frac{K_{\mathfrak{A}_{\mathfrak{K}\beta}\mathfrak{f}\mathfrak{K}}}{K_{\mathfrak{A}_{\mathfrak{K}\beta}\mathfrak{B}^{\mathfrak{K}}\mathfrak{K}}} = \frac{\int_{E_{0}}^{E_{\beta}} P(E) \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{2} \left[R(E') - R(E) \right] \frac{B(E')}{2} dE' + \frac{B(E)}{2} \right\} dE}{\int_{0}^{E_{\beta}} \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{2} \left[R(E') - R(E) \right] \frac{B(E')}{2} dE' + \frac{B(E)}{2} \right\} dE}$$
(24)

(25)

2.4.3 K_{B 穿越}计算公式

结合式(12)和式(20),可得:

$$K_{\beta \bar{\gamma} \bar{z} \bar{z}} = \frac{K_{\beta \bar{\eta} \bar{x}}}{K_{\beta \bar{z} \bar{u} \bar{n}}}$$
$$= \frac{K_{\underline{k} \beta \bar{\eta} \bar{x}} f_1 F_1 g + K_{\underline{k} \underline{k} \beta \bar{\eta} \bar{x}} f_2 F_2 r \sqrt{T/T_0} s_0}{K_{\underline{k} \beta \bar{z} \bar{u} \bar{n}} f_1 F_1 g + K_{\underline{k} \underline{H} \beta \bar{z} \bar{u} \bar{n}} f_2 F_2 r \sqrt{T/T_0} s_0}$$
(26)

结合式(21)、式(23)、式(26),可得:

2.5 汇总

现将热中子、超振中子、中子场全谱中子 K 因子汇总, 见表 1。

	$K_{f\!F}$						
热中子	$K_{f_1F_1} = f_1F_1$						
超振中子	$K_{f_2F_2} = f_2F_2$						
全谱中子	$K_{fF} = \frac{f_1 F_1 g + f_2 F_2 r \sqrt{T/T_0} s_0}{\left(g + r \sqrt{T/T_0} s_0\right)}$						
	K_{eta} $_{ m kar k}$						
热中子	$K_{\underline{\mathfrak{M}}\beta\underline{\mathfrak{s}}\underline{\mathfrak{R}}\underline{\mathfrak{R}}} = \int_{0}^{E_{\beta}} \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' \right\} dE$						
超振中子	$K_{\underline{B}\underline{K}\beta\underline{B}\underline{R}\underline{R}} = \int_{0}^{E_{\beta}} \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{2} \left[R(E') - R(E) \right] \frac{B(E')}{2} dE' + \frac{B(E)}{2} \right\} dE$						
全谱中子	$K_{\beta;\underline{a};\underline{m}} = \frac{K_{\underline{m}\beta;\underline{b};\underline{m}}f_{1}F_{1}g_{-}+K_{\underline{m}\underline{m}\beta;\underline{b};\underline{m}}f_{2}F_{2}r_{-}\sqrt{T/T_{0}}s_{0}}{f_{1}F_{1}g_{-}+f_{2}F_{2}r_{-}\sqrt{T/T_{0}}s_{0}}$						
	$K_{eta \; eta \; eta}$						
热中子	$K_{\pm\beta\beta\bar{n}\bar{\alpha}} = \int_{E_0}^{E_{\beta}} \left\{ P(E) \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_1 \left[R(E') - R(E) \right] B(E') dE' \right\} dE$						
超热共振中子	$K_{\text{alfk}\beta f \dot{\infty}} = \int_{E_0}^{E_{\beta}} P(E) \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_2 \left[R(E') - R(E) \right] \frac{B(E')}{2} dE' + \frac{B(E)}{2} \right\} dE$						
全谱中子	$K_{\beta f \hat{\mathcal{R}}} = \frac{K_{\underline{B}\beta f \hat{\mathcal{R}}} f_1 F_1 g + K_{\underline{B}\underline{B}\beta f \hat{\mathcal{R}}} f_2 F_2 r \sqrt{T/T_0} s_0}{f_1 F_1 g + f_2 F_2 r \sqrt{T/T_0} s_0}$						
	$K_{etaetaeta}$						
热中子	$K_{\pm\beta\beta\bar{\gamma}\bar{a}\bar{b}} = \frac{K_{\pm\beta\bar{\beta}\bar{n}\bar{m}}}{K_{\pm\beta\bar{n}\bar{m}\bar{m}}} = \frac{\int_{E_0}^{E_\beta} \left\{ P(E) \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_\beta} N_1 \left[R(E') - R(E) \right] B(E') dE' \right\} dE}{\int_{E}^{E_\beta} \left\{ \left(-\frac{dE}{dx} \right)^{-1} \int_{E}^{E_\beta} N_1 \left[R(E') - R(E) \right] B(E') dE' \right\} dE}$						
招势共振中了	$\int_{0}^{F} \left(\left(\frac{dx}{dx} \right)_{E}^{T} \int_{E}^{F} \right)$						
超热共振甲士	$K_{\underline{alk}\beta\bar{\gamma}\underline{k}\underline{k}} = \frac{K_{\underline{alk}\beta\bar{\gamma}\underline{k}\underline{k}}}{K_{\underline{alk}\beta\bar{\eta}\underline{k}\underline{k}}} = \frac{\int_{E_0}^{E_0} P(E) \left\{ \left(-\frac{dE}{dx} \right)_E^{-1} \int_E^{E_0} N_2 \left[R(E') - R(E) \right] \frac{B(E')}{2} dE' + \frac{B(E)}{2} \right\} dE}{\int_0^{E_0} \left\{ \left(-\frac{dE}{dx} \right)_E^{-1} \int_E^{E_0} N_2 \left[R(E') - R(E) \right] \frac{B(E')}{2} dE' + \frac{B(E)}{2} \right\} dE}$						
全谱中子	$K_{\beta \bar{\beta} \bar{m} \bar{m}} = \frac{K_{\beta \bar{\eta} \bar{m}}}{K_{\beta \bar{m} \bar{m}}} = \frac{K_{\underline{k} \beta \bar{\eta} \bar{m}} f_1 F_1 g_1 + K_{\underline{k} \underline{k} \underline{k} \bar{n} \bar{\eta} \bar{m}} f_2 F_2 r_2 \sqrt{T/T_0} s_0}{K_{\underline{k} \beta \bar{m} \bar{m}} f_1 F_1 g_1 + K_{\underline{k} \underline{k} \underline{m} \bar{m}} f_2 F_2 r_2 \sqrt{T/T_0} s_0}$						
	$K_{\beta\beta\bar{k}\bar{k}} = \frac{K_{\bar{k}\beta\beta\bar{k}\bar{k}\bar{k}}f_1F_1g + K_{\bar{k}\bar{k}\bar{k}\beta\bar{j}\bar{k}\bar{k}\bar{k}}f_2F_2r \sqrt{T/T_0}s_0}{K_{\bar{k}\beta\bar{j}\bar{k}\bar{k}\bar{k}}f_1F_1g + K_{\bar{k}\bar{k}\bar{k}\beta\bar{j}\bar{k}\bar{k}\bar{k}}f_2F_2r \sqrt{T/T_0}s_0}$						

	表 1 K 因子计算公式汇总	
Table 1	Summary of K factor calculation formula	IS

3 铑探测器轻水堆灵敏度 K 因子计算 结果

3.1 f、F、 K_{fF} 因子的计算结果

3.1.1 f_1 、 F_1 、 f_2 、 F_2 的计算结果(见图2)

铑发射体热中子自屏因子 f₁、热中子注量率降低因子 F₁和超热共振中子注量率降低因子 F₂参见文献[10],超热共振中子自屏因子 f₂参见文献[11]。

文献[10]中的中子注量率降低因子适用于 多能中子系统,当然也适用于¹⁰³Rh 共振峰区间 的中子。由于发射体对¹⁰³Rh 的大多数共振中 子(尤其是共振峰半宽度内的中子)可以近似看 成黑体,满足了文献[10]中 $x(\sum_a r_e)$ 值远大于1

的条件,即文献[10]中的式(6)可简化成式(7)。 这样大多数共振中子的中子注量率降低因子与 发射体的宏观吸收截面无关,而只与发射体的 半径和共振中子在探测器周围介质中的扩散长 度及迁移平均自由程有关,因此我们用1.26 eV 中子的中子注量率降低因子近似代替共振峰区 间中子的中子注量率降低因子的平均值,引起 的误差是不大的(见图2)。

3.1.2 K_r的计算结果及解读

(1)计算结果见表 2、图 3。

(2)计算结果解读。

①物理解读:表 2、图 3表明,在发射体直径相同情况下,铑发射体对超热共振中子的自屏蔽效应更大; K_F 随着 $r\sqrt{T/T_0}$ 的增大而减小。

Fig.3 K_{fF} factor of Rh detector in light water reactor

②数学分析:从式(3)知,
$$K_{fF} = \frac{f_1F_1g + f_2F_2r\sqrt{T/T_0}s_0}{(g + r\sqrt{T/T_0}S_0)}$$
; 设 $x = r\sqrt{T/T_0}$, $K_{fF} = \frac{(f_1F_1g + f_2F_2xS_0)}{(g + xS_0)}$;
 $\frac{dK_{fF}(x)}{dx} = \frac{(f_2F_2 - f_1F_1)gS_0}{(g + xS_0)^2}$, 同一直径下, $f_2F_2 < f_1F_1$, 因此, $\frac{dK_{fF}(x)}{dx} < 0$, 这表明, K_{fF} 随着超热参数 $r\sqrt{T/T_0}$ 的增大而减小。

	have 2 M _j meter of the detector in fight water reactor											
	发射体直径 /mm	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6			
	f_1F_1	0.8591	0.7317	0.6244	0.5350	0.4618	0.4023	0.3543	0.3170			
K_{fF}	$r \sqrt{T/T_0} = 0.03$	0.7990	0.6685	0.5672	0.4853	0.4198	0.3667	0.3237	0.2901			
	$r \sqrt{T/T_0} = 0.06$	0.7580	0.6252	0.5279	0.4511	0.3910	0.3422	0.3028	0.2718			
	$r \sqrt{T/T_0} = 0.09$	0.7272	0.5927	0.4985	0.4255	0.3694	0.3239	0.2871	0.2580			
	$r \sqrt{T/T_0} = 0.15$	0.6846	0.5479	0.4579	0.3902	0.3396	0.2986	0.2654	0.2390			
	f_2F_2	0.5209	0.3753	0.3019	0.2543	0.2250	0.2014	0.1820	0.1663			

表 2 铑探测器轻水堆 K_{fF} 因子 Table 2 K_{fF} factor of Rh detector in light water reactor

3.2 K_{β 逃脱}的计算结果及解读

3.2.1 K_{β 逃脱}的计算结果(见表 3、图 4)

表 3 铑探测器轻水堆的 $K_{\beta weild}$ 因子 Table 3 $K_{Besc.}$ factor of Rh detector in light water reactor

发射体直径 /mm		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
K _{超振β逃脱}		0.8418	0.7299	0.6536	0.6033	0.5778	0.5629	0.5525	0.5446
$K_{\beta \text{ ill}}$	$r \sqrt{T/T_0} = 0.15$	0.8137	0.6660	0.5528	0.4637	0.4091	0.3724	0.3472	0.3265
	$r \sqrt{T/T_0} = 0.09$	0.8086	0.6556	0.5352	0.4422	0.3826	0.3419	0.3125	0.2904
	$r \sqrt{T/T_0} = 0.06$	0.8053	0.6491	0.5242	0.4287	0.3660	0.3225	0.2912	0.2674
	$r \sqrt{T/T_0} = 0.03$	0.8011	0.6412	0.5111	0.4128	0.3462	0.2995	0.2656	0.2398
$K_{{ m A}_{{ m B}_{{ m B}}{ m B}}$		0.7961	0.6317	0.4954	0.3939	0.3224	0.2719	0.2347	0.2062

Fig.4 $K_{\beta esc.}$ factor of Rh detector in light water reactor

3.2.2 K_{β 逃脱}的计算结果解读

①物理解读:文献[3]假定,超热共振中子 只在发射体表面吸收,从而其诱发的 β 粒子只 在发射体表面均匀产生,且各向同性发射。超 热中子诱发的 β 粒子有 50% 不穿越发射体、 直接逃离。因此, $K_{B_{K}\beta,B_{K}}>K_{B,B,B_{K}};K_{B_{K}\beta,B_{K}}$ 永远大于 0.5。表 3 中,在直径相同的情况下, $r\sqrt{T/T_{0}}$ 越大, $K_{\beta,B_{K}}$ 越大;这是因为, $r\sqrt{T/T_{0}}$ 越 大,超热共振中子的比例越大,不穿越发射体、 直接逃离的 β 粒子的比分越大,导致 $K_{\beta,B_{K}}$ 越大。

②数学分析:用 3.1.2(2)节类似方法,设 $x = r \sqrt{T/T_0}$,可以证明, $\frac{dK_{\beta \& R}(x)}{dx} > 0$;因此,在 发射体直径相同情况下, $K_{\beta \& R}$ 随着 $r \sqrt{T/T_0}$ 的增 加而变大。

3.3 $K_{热\beta q \infty}$ 的计算结果

3.3.1 铑探测器轻水堆热中子*K*_{热β f 效}计算结果(见表4、图5)

发射体直径/		绝缘体厚度 /mm												
mm	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0			
0.2	0.7961	0.7588	0.7319	0.7070	0.6842	0.6614	0.6365	0.6157	0.5950	0.5764	0.5556			
0.4	0.6317	0.5921	0.5623	0.5361	0.5124	0.4899	0.4686	0.4473	0.4284	0.4095	0.3919			
0.6	0.4954	0.4577	0.4295	0.4047	0.3825	0.3623	0.3436	0.3258	0.3090	0.2935	0.2786			
0.8	0.3939	0.3595	0.3346	0.3135	0.2946	0.2773	0.2617	0.2490	0.2334	0.2207	0.2087			
1.0	0.3224	0.2923	0.2710	0.2528	0.2369	0.2224	0.2092	0.1968	0.1856	0.1748	0.1647			
1.2	0.2719	0.2453	0.2267	0.2111	0.1972	0.1847	0.1732	0.1627	0.1528	0.1443	0.1356			
1.4	0.2347	0.2112	0.1947	0.1808	0.1686	0.1575	0.1475	0.1384	0.1295	0.1214	0.1138			
1.6	0.2062	0.1850	0.1703	0.1578	0.1468	0.1370	0.1278	0.1195	0.1117	0.1045	0.0979			

表 4 铑探测器轻水堆 $K_{\pm\beta \bar{n}\beta}$ Table 4 $K_{\text{ther},\beta \text{ effe.}}$ factor of Rh detector in light water reactor

3.3.2 铑探测器轻水堆超热共振中子 K 超振 B 有效

计算结果(见表5、图6)

发射体直径/												
mm	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
0.2	0.8418	0.8057	0.7796	0.7526	0.7309	0.7088	0.6885	0.6668	0.6470	0.6263	0.6085	
0.4	0.7299	0.6906	0.6629	0.6361	0.6148	0.5926	0.5718	0.5519	0.5329	0.5138	0.4955	
0.6	0.6536	0.6161	0.5890	0.5649	0.5429	0.5222	0.5023	0.4839	0.4662	0.4490	0.4324	
0.8	0.6033	0.5678	0.5422	0.5199	0.4995	0.4804	0.4620	0.4452	0.4286	0.4127	0.4010	
1.0	0.5778	0.5434	0.5188	0.4974	0.4773	0.4590	0.4451	0.4281	0.4118	0.3962	0.3809	
1.2	0.5629	0.5289	0.5047	0.4811	0.4666	0.4493	0.4306	0.4132	0.3970	0.3810	0.3658	
1.4	0.5525	0.5188	0.4948	0.4754	0.4557	0.4368	0.4188	0.4016	0.3855	0.3698	0.3548	
1.6	0.5446	0.5109	0.4873	0.4667	0.4464	0.4278	0.4099	0.3931	0.3768	0.3612	0.3461	

表 5 铑探测器轻水堆 $K_{_{超振\beta} \bar{n} \dot{\alpha}}$ Table 5 $K_{epi,ther,reson, Beffe}$ factor of Rh detector in light water reactor)

3.3.3 铑探测器轻水堆全谱中子 K_{β 有效}

(1) 铑探测器轻水堆全谱中子 K_{β 有效}计算结果(见表 6、图 7 及图 8)

铑探测器轻水堆全谱中子 K_{β 有效}不仅随着

发射体直径、绝缘体厚度的变化而变化,还随着 超热参数的变化而变化。下面给出两种典型案 例的数据。

	utameter when its insulator thickness -0.5 mm.											
发射体直径 /mm		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6			
$K_{{}_{\mathrm{E}\mathrm{K}\mathrm{eta}\mathrm{fam}\mathrm{fm}$		0.7526	0.6361	0.5649	0.5199	0.4974	0.4811	0.4754	0.4667			
$K_{\beta \ f \chi}$	$r \sqrt{T/T_0} = 0.15$	0.7246	0.5712	0.4576	0.3823	0.3360	0.3042	0.2846	0.2676			
	$r \sqrt{T/T_0} = 0.09$	0.7192	0.5606	0.4414	0.3611	0.3106	0.2759	0.2533	0.2346			
	$r \sqrt{T/T_0} = 0.06$	0.7162	0.5539	0.4312	0.3479	0.2946	0.2580	0.2334	0.2136			
	$r \sqrt{T/T_0} = 0.03$	0.7121	0.5458	0.4191	0.3322	0.2756	0.2367	0.2097	0.1884			
	$K_{\pm \beta} = \beta $	0.7070	0.5361	0.4047	0.3135	0.2528	0.2111	0.1808	0.1578			

65

核安全

Fig.7 $K_{\beta \text{effe.}}$ of Rh detector in light reactor varies with the change of epi-thermal parameters ($r\sqrt{T/T_0}$) and emitter diameter When its insulator thickness =0.3 mm.

(2) 铑探测器轻水堆全谱中子 K_{β 有效}计算结 果解读。

① 物理解读: $r \sqrt{T/T_0}$ 越大,超热共振中子 的比分越大。超热共振中子诱发的 β 粒子 50% 直接逃离发射体。因此, $r \sqrt{T/T_0}$ 越大, $K_{\beta \pm R}$ 越 大,逃脱谱更硬。逃脱谱越硬, β 粒子穿越绝缘 体空间电荷电势峰的概率越大。 $K_{\beta \pi \pm R} = K_{\beta \pm R}$

图 8 发射体直径为 1.0 mm 时,铑探测器 $K_{\beta \bar{q} \bar{\alpha} \bar{\alpha}}$ 随超热 参数 ($r \sqrt{T/T_0}$) 及绝缘体厚度的变化而变化 Fig.8 $K_{\beta effe.}$ of Rh detector in light reactor varies with the change of epi-thermal parameters ($r \sqrt{T/T_0}$) and insulator thickness When its emitter diameter = 1.0 mm.

 $K_{\beta \, \bar{\gamma} \bar{k} \bar{k}}$,因此, $r \sqrt{T/T_0}$ 越大, $K_{\beta \, \bar{q} \bar{\chi}}$ 越大。

 ② 数学解析:用 3.1.2(2)节类似方法,设

 $x = r \sqrt{T/T_0}$,可以证明, $\frac{dK_{\beta \bar{q} \bar{\chi}}(x)}{dx} > 0$;因此,在

 发射体直径、绝缘体厚度不变的情况下, $K_{\beta \bar{q} \bar{\chi}}$ 随着 $r \sqrt{T/T_0}$ 的增加而变大。

3.4 *K*_{β 穿越}计算结果

3.4.1 铑探测器轻水堆热中子K_{热β 穿越}计算结果(见图9)

3.4.2 铑探测器轻水堆超热共振中子 K_{超振β 穿越}
 计算结果(见图 10)

图 10 铑探测器轻水堆超热共振中子 K_{超振β穿越} Fig.10 K_{epi.ther.reson.βcro.} of Rh detector in light reactor

3.4.3 铑探测器轻水堆全谱中子 K_{β 穿越}代表性 案例计算结果(见图 11)

图 11 发射体直径为 1.0 mm 时, 铑探测器 $K_{\beta \, \overline{p} \, \overline{p} \, \overline{n}}$ 随超 热参数 $(r \sqrt{T/T_0})$ 及绝缘体厚度的变化而变化 Fig.11 $K_{\beta \, cro.}$ of Rh detector in light reactor varies with the change of epi-thermal parameter $(r \sqrt{T/T_0})$ and

insulator thickness When its emitter diameter = 1.0 mm.

4 铑探测器重水堆 K 因子计算结果

4.1 铑探测器重水堆 f、F 因子计算结果(见图 12)

图 12 铑探测器发射体重水堆自屏因子 f、中子注量率 降低因子 F 随发射体直径的变化而变化

4.2 铑探测器重水堆 f₁F₁、f₂F₂、K_{fF} 因子计算结
 果(见图 13)

图 13 铑探测器重水堆 K_{fF} 因子 Fig.13 K_{fF} factor of Rh detector in heavy water reactor

4.3 铑探测器重水堆 K_{β 有效}

4.3.1 铑探测器重水堆热中子 K_{热β 有效}、超热 共振中子 K_{超振β 有效}

从本文式(9)、式(10)知,铑探测器热中子 的 K_{热β 有效}、和超热共振中子 K_{超振β 有效}都与堆型 无关,只和发射体直径及绝缘体厚度、材料密度 有关。因此,铑探测器重水堆的热中子 K_{热β 有效}、 和超热共振中子 K_{超振β 有效}与其轻水堆的热中子 K_{热β 有效}、和超热共振中子 K_{超振β 有效}相同,见本文 表 4、表 5。

4.3.2 铑探测器重水堆 K_{β 有效}

用本文式(12),可以计算出特定几何尺寸、特 定超热参数 $r \sqrt{T/T_0}$ 下,铑探测器重水堆 $K_{\beta \bar{n} \bar{\alpha} \sigma}$ 。 这里只计算几个典型案例的重水堆 $K_{\beta \bar{n} \bar{\alpha} \sigma}$,并与 轻水堆的 $K_{\beta \bar{n} \bar{\alpha} \sigma}$ 进行比较。结果表明,几何尺寸 相同的探测器,在相同中子场环境中,其重水堆 $K_{\beta \bar{n} \bar{\alpha} \sigma}$ 与轻水堆 $K_{\beta \bar{n} \bar{\alpha} \sigma}$ 基本相等,相对误差大都小 于 1%。典型案例的计算结果见表 7。

因此,可以把轻水堆的 K_{β 有效}(典型案例见 表 6、图 7、图 8) 近似用于重水堆,引起的误差可 以接受。

表 7	铑探测器重水堆 K_{β}	_{有效} 与其轻水堆 /	K _{β 有效} 比较
-----	---------------------	-----------------------	----------------------

Table 7 Comparison between $K_{\beta \text{effective}}$ of Rh detector in heavy water reactor and $K_{\beta \text{effective}}$ of Rh detector in light waterreactor

探测限带学	堆型及其比较	$K_{{ m A}{ m eta} { m fa}{ m eta}}$ –	不同 $r\sqrt{T/T_0}$ 下的 $K_{\beta \bar{\eta} \bar{\chi}}$				V
1本初前1田上			0.03	0.06	0.09	0.15	 Λ 超振 β 有效
直径 0.5 mm	重水	0.4704	0.4823	0.4923	0.5007	0.5141	0.5989
绝缘体 0.3 mm	轻水堆	0.4704	0.4824	0.4925	0.5010	0.5144	0.5989
	比较	1.0	0.9997	0.9995	0.9994	0.9994	1.0
直径 1.0 mm	重水	0.2528	0.2740	0.2920	0.3073	0.3319	0.4974
绝缘体 0.3 mm	轻水堆	0.2528	0.2756	0.2946	0.3106	0.3361	0.4974
	比较	1.0	0.9941	0.9911	0.9893	0.9877	1.0
直径 1.4 mm	重水	0.1808	0.2064	0.2280	0.2463	0.2758	0.4754
绝缘体 0.3 mm	轻水堆	0.1808	0.2097	0.2334	0.2533	0.2846	0.4754
	比较	1.0	1.015	1.023	1.028	1.031	1.0

注:工程及科研实践表明,实践使用的铑探测器的绝缘体厚度大都小于或等于 0.3 mm,详见文献[1]表4、表5及文献[3]表4。
4.4 铑探测器重水堆 K_{β 逃脱}

用 4.3 节类似的方法,可以证明,几何尺寸 相同的探测器,在相同中子场环境中,其重水堆 *K*_{β 逃脱}与轻水堆 *K*_{β 逃脱}基本相等。因此,可以把轻 水堆的 *K*_{β 逃脱}近似用于重水堆,引起的误差可以 接受。

4.5 铑探测器重水堆 K_{β 穿越}

从本文式(21)、式(23)和式(25)知, $K_{\underline{B}\beta \overline{\beta} \overline{B} \overline{B}} = K_{\underline{B}\beta \overline{\beta} \overline{D} \overline{X}}/K_{\underline{B}\beta \underline{B} \underline{B} \overline{B}}, K_{\underline{B}\underline{B}\beta \overline{B} \underline{B}} = K_{\underline{B}\underline{B}\beta \overline{\beta} \overline{D}}/K_{\underline{B}\underline{B}\beta \underline{B} \underline{B} \overline{B}}, K_{\beta \overline{\beta} \underline{B} \underline{B}}, K_{\beta \overline{\beta} \underline{B} \underline{B}}, \overline{K}_{\beta \overline{\beta} \underline{B}}, \overline{K}, \underline{K}, \overline{K}, \overline{K}, \underline{K}, \underline{K$

4.6 小结

热中子的 K_{热β 逃脱}、K_{热β 有效}、K_{热β γjæ}和超热共 振中子的 K_{超振β 有效}、K_{超振β zkli}、K_{超振β γjæ}都和堆型 无关,只和发射体直径、材料及绝缘体厚度、材 料密度有关。但全谱中子的 K_{β 逃脱}、K_{β 有效}、K_{β γjæ} 和堆型有关,但影响不大。轻水堆的 K_{β 速脱}、 K_{β 有效}、K_{β γjæ}和重水堆的 K_{β 逃脱}、K_{β 有效}、K_{β γjæ}之间 可以近似引用。

5 中子场中子温度对铑探测器灵敏度 K因子影响

5.1 中子场中子温度对铑探测器轻水堆灵敏度 K 因子影响

本文计算中,设定中子温度为 20 °C,设定 ¹⁰³Rh 的 $g(20^{\circ}C)=1.023, s_0=s(20^{\circ}C)=7.255$ 。因此,目前本文给出的 K 因子数据都是基于设定 中子温度为 20 °C 的计算结果。也就是说,上述 铑探测器 K 因子随着超热参数 $r \sqrt{T/T_0}$ 的变化 而变化、随着发射体直径的变化而变化、随着绝 缘体厚度的变化而变化,都是设定中子温度是 不变的,即设定中子温度为 20 °C。

现在研究中子场中子温度对铑探测器灵敏 度 K 因子影响,研究中采用数据验证方法,而不 是理论分析方法。

5.1.1 中子场中子温度变化对 K_f 的影响

假定把发射体直径为1mm的探测器安装 在轻水堆堆芯,探测器位置的超热参数 $r\sqrt{T/T_0} =$ 0.06,用本文式(3)计算该探测器在不同中子温 度下的 K_{fr} ,结果见表 8。 表 8 发射体 直径 1 mm 的 铑 探测器, 在 超 热 参数 $r \sqrt{T/T_0} = 0.06$ 的中子场, 其 K_{fF} 随中子温度的变化

Table 8 The K_{fF} of Rh detectors varies with neutrontemperature when Rh detectors with an emitterdiameter of 1 mm and in a neutron field with epi-

thermal parameter $r \sqrt{T/T_0} = 0.06$

$T/^{\circ}\mathbb{C}$	20	100	200	300	420
g	1.023	1.041	1.066	1.093	1.128
K_{fF}	0.3910	0.3919	0.3930	0.3942	0.3958
比值	1.00	1.0023	1.005	1.008	1.012

表 8 表明,在铑探测器发射体直径确定、堆 型确定、中子能谱超热参数确定的情况下,中子 温度从 20℃变为 420℃,铑探测器的 K_f 仅增 加约 1%。换句话说,把一只铑探测器放在典型 游泳池式实验堆堆芯或典型核电厂反应堆堆芯 中,只要探测器位置的超热参数r √*T*/*T*₀ 相同, 这只探测器的 K_f 是近似相同的,相对误差不超 过 1%。

5.1.2 中子场中子温度变化对 K_{β 有效}的影响

假定把发射体直径为 1 mm、绝缘体厚度为 0.3 mm 的探测器安装在轻水堆堆芯,探测器位 置的超热参数 $r \sqrt{T/T_0} = 0.06$,用本文式(12)计 算该探测器在不同中子温度下的 $K_{\beta \bar{\eta} \bar{\alpha}}$,结果见 表 9。

表 9 发射体直径为 1 mm、绝缘体厚度为 0.3 mm 的 铑探测器,在超热参数 $r \sqrt{T/T_0}=0.06$ 的轻水堆中子场, 其 K_{Batty} 随中子温度的变化

Table 9 The $K_{\beta eff.}$ of Rh detectors varies with neutron temperature when Rh detectors with an emitter diameter of 1 mm and an insulator thickness of 0.3 mm, and in a neutron field with epi-thermal parameter $r \sqrt{T/T_0}=0.06$

<i>T</i> /℃	20	100	200	300	420
g	1.023	1.041	1.066	1.093	1.128
$K_{\beta \ \pi \dot{\chi}}$	0.2947	0.2941	0.2933	0.2923	0.2913
比值	1.00	0.9979	0.9952	0.9918	0.9884

表9表明,在铑探测器几何尺寸(发射体 直径、绝缘体厚度)确定、堆型确定、中子能谱 超热参数确定的情况下,中子温度从20℃变 为 420 °C, 铑探测器的 $K_{\beta \bar{n} \bar{\alpha} \bar{\alpha}}$ 仅降低约 1%。换 句话说, 把一只铑探测器放在典型游泳池式 实验堆堆芯或典型核电厂反应堆堆芯中, 只 要探测器位置的超热参数 $r \sqrt{T/T_0}$ 相同, 这只 探测器的 $K_{\beta \bar{n} \bar{\alpha} \bar{\alpha}}$ 是近似相同的, 相对误差不超 过 1%。

5.1.3 中子场中子温度变化对 K_{β 逃脱}的影响

 $K_{\beta \, \underline{u} \underline{N}}$ 可以看作绝缘体厚度为0时的 $K_{\beta \, \overline{n} \underline{w}}$,因此,从5.1.2节的结论可以推出:当中子温度从20℃变为420℃,铑探测器的 $K_{\beta \, \underline{u} \underline{N}}$ 仅会有约1%的变化。

5.1.4 中子场中子温度变化对 K_{β 穿越}的影响

从本文式(25)、(26)知, $K_{\beta \, \bar{\gamma} \bar{k}} = K_{\beta \, \bar{\eta} \bar{\chi}}/K_{\beta \, \bar{\beta} \bar{k} \bar{k}}$ 。 因此,从5.1.3节及5.1.4节的结论可以推论出: 当中子温度从20℃变为420℃,铑探测器的 $K_{\beta \, \bar{\gamma} \bar{k}}$ 仅会有约1%的变化。

5.2 中子场中子温度对铑探测器重水堆灵敏度 K 因子影响

5.2.1 中子场中子温度变化对重水堆 K_{β 有效}的 影响

假定把发射体直径为 1 mm、绝缘体厚度为 0.3 mm 的探测器安装在重水堆堆芯,探测器位 置的超热参数 $r \sqrt{T/T_0} = 0.06$,用本文式(12)计 算该探测器在不同中子温度下的 $K_{\beta \, f \, f \chi}$,结果见 表 10。

表 10 发射体直径为 1 mm、绝缘体厚度为 0.3 mm 的 铑探测器,在超热参数 $r \sqrt{T/T_0}=0.06$ 的重水堆中子场, 其 $K_{B f a \infty}$ 随中子温度的变化

Table 10 The $K_{\beta \text{eff.}}$ of Rh detectors varies with neutron temperature when Rh detectors with an emitter diameter of 1 mm and an insulator thickness of 0.3 mm, and in a neutron field with epi-thermal parameter $r \sqrt{T/T_0}=0.06$

<i>T</i> /℃	20	100	200	300	420
g	1.023	1.041	1.066	1.093	1.128
$K_{\beta \ {ar f}{x}}$	0.2925	0.2919	0.2910	0.2902	0.2894
比值	1.00	0.9979	0.9948	0.9921	0.9894

表9表明,在铑探测器几何尺寸(发射体 直径、绝缘体厚度)确定、堆型确定、中子能谱 超热参数确定的情况下,中子温度从 20℃变为 420℃,铑探测器的重水堆 $K_{\beta \bar{n} \bar{\infty}}$ 仅降低约 1%。 换句话说,把一只铑探测器放在典型游泳池式 重水实验堆堆芯或典型重水堆核电厂堆芯中, 只要探测器位置的超热参数 $r \sqrt{T/T_0}$ 相同,这只 探测器的 $K_{\beta \bar{n} \bar{\infty}}$ 是近似相同的,相对误差不超 过 1%。

5.2.2 中子场中子温度变化对重水堆*K*_f, *K*_{β 速脱}、*K*_{β 穿越}的影响

用 5.1 节类似的方法,可以计算或推论出: 在铑探测器几何尺寸(发射体直径、绝缘体厚 度)确定、堆型确定、中子能谱超热参数确定 的情况下,中子温度从 20 ° 变为 420 ° ,其重 水堆 $K_{f^{c}}, K_{\beta^{BR}}, K_{\beta^{SR}}$ 仅有很小变化(约 1% 的 变化)。

5.3 物理解读及数学分析

5.3.1 物理解读

表 8、表 9、表 10 的结果表明,铑探测器灵 敏度 K 因子似乎与中子温度无关,不随着中子 温度的变化而变化。当然,中子温度对灵敏度 K 因子是有影响的,但在 5.1 节、5.2 节的分析中, 这一作用被隐藏了。5.1 节、5.2 节的分析结果, 是在假定铑探测器几何尺寸(发射体直径、绝缘 体厚度)确定、堆型确定、中子能谱超热参数确 定的前提下取得的。中子能谱超热参数 $r\sqrt{T/T_0}$ 确定,为一常数,这就意味着,当 T 增加时,r 必 须减少,这样才能使 $r\sqrt{T/T_0}$ 保持不变。T 对灵 敏度 K 因子是有影响的,但 \sqrt{T} 增加对灵敏度 K 因子的正影响,与 r 减少对灵敏度 K 因子的负 影响近似抵消,这样,当 T 增加时,在 $r\sqrt{T/T_0}$ 保 持不变的前提下,灵敏度 K 因子近似不变,但这 只是一种表象。

5.3.2 数学分析

从本文式(3)、式(12)、式(20)、式(26)知,铑 探测器灵敏度 K 因子 *K_f*、*K*_{β 有效}、*K*_{β 逃脱}、*K*_{β 穿越}的 计算公式的架构相同,如下:

$$K = \frac{K_1}{K_2} = \frac{A_1 + B_1}{A_2 + B_2}$$

该式有以下特点:

(1) A_1 、 A_2 中都含 g 因子,当中子温度 T 变

化时,g变化,但A1/A2不会变,为一常数;

 $(2)A_1$ 远大于 B_1,A_2 远大于 B_2 ;

(3) B₁/B₂为常数,不随变化而变化。

若假设 B_1 、 B_2 为 0, 那么 $K=\frac{A_1}{A_2}$, 为一个常数, K 不会随着 T、g 的变化而变化。

*B*₁、*B*₂虽然不为0,但与*A*₁、*A*₂相比,小很多。 因此,*A*₁/*A*₂在计算*K*因子时起主导作用;*B*₁、*B*₂ 有一定影响,但影响相对较小。这就是表8、表9、 表10中,当*T*、*g*变化时,而相关灵敏度 K 因子 只有约1%变化的定性解释。

5.4 小结:重要价值与作用

5.1节已经说明,本文计算中,设定中子温 度为20℃,设定¹⁰³Rh的g(20℃)=1.023,s₀=s (20℃)=7.255。因此,目前本文给出的K因子 数据都是基于设定中子温度为20℃的计算结 果。本文灵敏度K因子的计算结果原则上也只 能应用于中子温度为20℃的中子场。5.1节、5.2 节分析结果表明,本文灵敏度K因子的计算结 果不但可应用于中子温度为20℃的中子场,还 可以近似应用于其他温度下(20℃~420℃)的 中子场。这样,本文给出的灵敏度K因子计算 结果,就可以应用于所有游泳池式热中子堆,还 可推广近似应用于热堆核电厂。近似应用的相 对误差约1%。这就是本节分析的重要价值和 作用。

6 用铑探测器灵敏度 K 因子计算其单位长发射体灵敏度

6.1 铑探测器单位长发射体灵敏度计算公式

结合式(2)及 K_{β 有效}定义,铑探测器单位长 发射体灵敏度可以用下式表示:

$$I = eK_{\beta \bar{\eta} \bar{\chi}} K_{fF} \pi r_e^2 N \sigma_0 \left(g + r \sqrt{T/T_0} s_0\right) \quad (28)$$

由于 $K_{\beta q \dot{\alpha}} = K_{\beta \beta z \dot{\alpha}} K_{\beta \dot{\alpha} \dot{\mu} \dot{\mu}}$,那么,

 $I = eK_{fF}K_{\beta \not\equiv i \not\in K} K_{\beta \not\equiv i \not\in K} \pi r_e^2 N \sigma_0 (g + r \sqrt{T/T_0} s_0) (29)$

结合式(1)及*K*_{热β有效}、*K*_{超振β有效}定义,铑探 测器单位长发射体灵敏度还可以用下式表示:

$$I = e f_1 F_1 K_{\underline{R}\beta \bar{n}\underline{\alpha}} \pi r_e^2 N \sigma_0 g + e f_2 F_2 K_{\underline{R}\underline{\beta}\bar{n}\underline{\alpha}\underline{\alpha}} \pi r_e^2 N \sigma_0 r \sqrt{T/T_0} s_0$$
(30)

由于 $K_{\underline{A}_{\beta}\beta} = K_{\underline{A}_{\beta}\beta\underline{B}\underline{B}\underline{B}} K_{\underline{A}_{\beta}\beta\underline{B}\underline{B}} K_{\underline{B}_{\beta}\underline{B}} K_{\underline{B}} K_{\underline{B}}$

$$I = ef_1 F_1 K_{\underline{A}\underline{\beta}\underline{\beta}\underline{B}\underline{B}\underline{B}} K_{\underline{A}\underline{\beta}\underline{\beta}\underline{\beta}\underline{B}} \pi r_e^2 N \sigma_0 g + ef_2 F_2 K_{\underline{B}\underline{K}\underline{\beta}\underline{\beta}\underline{B}\underline{B}} K_{\underline{B}\underline{K}\underline{\beta}\underline{\beta}\underline{\beta}\underline{B}} \pi r_e^2 N \sigma_0 r \sqrt{T/T_0} s_0$$
(31)

上述公式,既适用于轻水堆,也适用于重 水堆。如果知道某一探测器的灵敏度 K 因子, 就可以用上述公式[式(28)~式(31)]计算该探 测器的单位长发射体灵敏度。注意,6.1 节中的 πr_e^N与本文式(1)、式(2)中的N₁的物理内涵相同。

本文 8.2 节给出了利用上述公式计算铑探 测器单位长发射体灵敏度的例子。

6.2 用铑探测器灵敏度 K 因子和探测器灵敏 度的理论计算值或其刻度值推算其不同中子场 环境的下的灵敏度

由式(8)知:
$$I = a + br \sqrt{T/T_0}$$

其中, $a = eK_{ABA f a g} f_1 F_1 \pi r_e^2 N \sigma_0 g$;
 $b = eK_{B I g A g a g} f_2 F_2 \pi r_e^2 N \sigma_0 s_0$

从本文式(9)、式(10)知,铑探测器的*K*_{热ρ有效}、 *K*_{超振ρ有效}只和探测器的几何尺寸有关,和堆型(慢 化剂)无关。从文献[10]式(2)、式(3)及式(4) 知,*f*₁和慢化剂无关。从文献[11]式(50.43)知, *f*₂和慢化剂无关。从文献[10]式(5)、式(6)及式 (7)知,*F*₁、*F*₂不但和发射体直径及发射体材料的 宏观中子截面有关,也和慢化剂有关。因此,上 述短式中,只有*F*₁、*F*₂和堆型有关,其他因子或 参数和堆型无关。*g*因子虽然和堆型无关,但随 着中子温度的变化而变化,详见文献[9]表1。 6.2.1 用铑探测器轻水堆灵敏度理论计算值推 算其轻水堆不同中子温度下的灵敏度

文献[3]给出了中子温度为20℃的铑探测 器轻水堆单位长发射体灵敏度,包括单位长发 射体热中子灵敏度 a 值和单位长发射体超热共 振 b 值。可以用上述 a、b 值,通过下式计算中 子温度为 T 时的铑探测器轻水堆单位长发射体 灵敏度。

$$I_{\mathfrak{K}\mathfrak{K}\mathfrak{H}}(T) = a_{\mathfrak{K}\mathfrak{K}\mathfrak{H}_{20^{\circ}}} \frac{g(T)}{g(20^{\circ})} + b_{\mathfrak{K}\mathfrak{K}\mathfrak{H}} r_{\sqrt{T/T_{0}}} (32)$$

注:铑探测器的超热共振 b 值和中子温度 无关。 6.2.2 用铑探测器轻水堆灵敏度理论计算值推 算其重水堆不同中子温度下的灵敏度

文献[3]给出了中子温度为20℃的铑探测 器轻水堆灵敏度,包括单位长发射体热中子灵 敏度 a 值和单位长发射体超热共振 b 值。可以 用上述 a、b 值,通过下式计算中子温度为 T 时 的铑探测器重水堆单位长发射体灵敏度。

$$I_{\underline{\pi} \wedge \underline{\mu}}(T) = a_{\underline{8} \wedge \underline{\mu}_{20} \mathbb{C}} \frac{F_{1 \underline{\pi} \wedge \underline{\pi}_{1}}}{F_{1 \underline{8} \wedge \underline{\pi}_{1}}} \times \frac{g(T)}{g(20^{\circ} \mathbb{C})} + b_{\underline{8} \wedge \underline{\pi}_{1}} \frac{F_{2 \underline{\pi} \wedge \underline{\pi}_{1}}}{F_{2 \underline{8} \wedge \underline{\pi}_{1}}} r \sqrt{T/T_{0}}$$
(33)

可以通过图 2(或其对应的表格数据)获取 轻水堆的 F_1 、 F_2 ,可以通过图 12(或其对应的表 格数据)获取重水堆的 F_1 、 F_2 。

6.2.3 铑探测器重水堆灵敏度与其轻水堆灵敏 度比较近似关系式

式(28)中,只有 K_{fr} 和堆型有关。探测器轻水堆的 $K_{\beta \bar{n} \bar{\alpha} \bar{\alpha}}$ 和其重水堆的 $K_{\beta \bar{n} \bar{\alpha} \bar{\alpha}}$ 和其重水堆的 $K_{\beta \bar{n} \bar{\alpha} \bar{\alpha}}$ 近似。其他因子或参数和堆型无关。也就是说,如果知道铑探测器在轻水堆某一中子场环境下的灵敏度,那么可以直接推算该探测器在重水堆同样中子场环境下 $(r\sqrt{T/T_0}$ 相同、中子温度近似)的灵敏度;反之,亦然。计算公式为:

$$I_{\pm \kappa \pm 2 \pm g} \approx \frac{I_{\text{K} \kappa \pm 2 \pm g} \times K_{f = \pi \times \pm}}{K_{f = \pi \times \pm}}$$
(34)

6.2.4 用铑探测器轻水堆灵敏度刻度值推算它的其他情况下的灵敏度

(1)用铑探测器轻水堆灵敏度刻度值推算其 重水堆灵敏度

文献[12]给出了一只铑探测器轻水堆灵敏 度刻度结果(又见文献[3]1.2.2节)。该铑探测 器发射体直径为1mm、其长度为20mm,探测器 绝缘体厚度 0.27 mm、绝缘体材料 Al₂O₃。灵敏 度刻度实验在原子能研究院游泳池轻水实验堆 进行。实验堆的中子温度:326 K(53℃)^[14],本 文设定中子温度为60℃,取g(60℃)=1.032^[9]。

可以采用上述刻度实验获得的该探测器的 热中子灵敏度 a 值和超热共振 b 值(见文献[3] 1.2.2 节),通过下式推算出该探测器的重水堆灵 敏度。但用这种方法推算出的探测器灵敏度仍 应该归类于理论计算灵敏度,而不应归类于灵 敏度刻度值。

$$I_{\underline{\pi}\underline{\pi}\underline{\mu}\underline{\mu}}(T) = a_{\underline{\aleph}\underline{\pi}\underline{\mu}\underline{\mu}\underline{60}\mathbb{C}} \frac{F_{1\underline{\pi}\underline{\pi}\underline{\pi}\underline{\mu}}}{F_{1\underline{\aleph}\underline{\pi}\underline{\mu}\underline{\mu}}} \times \frac{g(T)}{g(60^{\circ}\mathbb{C})} + \\
 b_{\underline{\aleph}\underline{\pi}\underline{\mu}\underline{\mu}} \frac{F_{2\underline{\pi}\underline{\pi}\underline{\pi}\underline{\mu}}}{F_{2\underline{\aleph}\underline{\pi}\underline{\pi}\underline{\mu}}} r \sqrt{T/T_{0}}$$
(35)

该探测器的灵敏度刻度实验是在游泳池式 轻水反应堆进行的,通过上式,可以推算出该探 测器在重水堆核电厂堆芯的灵敏度。

(2)用铑探测器轻水堆灵敏度刻度值推算其 不同中子温度下的轻水堆灵敏度

还可以通过下式推算出该探测器在不同中 子温度下的轻水堆灵敏度。

$$I_{\text{轻水}\#}(T) = a_{\text{轻水}\#60^{\circ}} \frac{g(T)}{g(60^{\circ}\text{C})} + b_{\text{轻水}\#} r \sqrt{T/T_0} (36)$$

通过上式,可以推算出该探测器在轻水堆 核电厂堆芯的灵敏度。

6.2.5 用铑探测器重水堆灵敏度刻度值推算它的其他情况下的灵敏度

(1)用铑探测器重水堆灵敏度刻度值推算其 轻水堆灵敏度

文献[13]给出了一只铑探测器重水堆灵敏 度刻度结果(又见文献[3]1.2.2节)。该探测器 的发射体直径为 0.5 mm、长度为 30 mm,探测器 绝缘体厚度 0.25 mm、绝缘体材料 Al₂O₃。灵敏 度刻度实验在英国 Harwell 冥王重水堆 PLUTO 进行。PLUTO^[15,16]是罐式重水研究堆,与游泳 池式反应堆类似,其慢化剂温度 70℃(343.6 K)。 对于典型热中子堆, $T/T_m < 1.07^{[9]}(T_m: 慢化剂温$ 度),可以推测出,冥王堆的中子温度 <math>T < 367 K (94℃)这里假定中子温度为 80℃,取 g(80 ℃) =1.037^[9]

可以采用上述刻度实验获得的该探测器的 热中子灵敏度 a 值和超热共振 b 值(见文献[3] 1.2.2 节),通过下式推算出该探测器的轻水堆灵 敏度。但用这种方法推算出的探测器灵敏度仍 应该归类于理论计算灵敏度,而不应归类于灵 敏度刻度值。

$$I_{\underline{K}_{K}_{\#}} = a_{\underline{\pi}_{K}_{\#}\underline{K}_{0}} \frac{F_{1}\underline{K}_{K}_{\#}}{F_{1}\underline{\pi}_{K}_{\#}} \times \frac{g(T)}{g(80^{\circ}C)} + b_{\underline{\pi}_{K}_{\#}} \frac{F_{2}\underline{K}_{K}_{\#}}{F_{2}\underline{\pi}_{K}_{\#}} r \sqrt{T/T_{0}}$$
(37)

该探测器的灵敏度刻度实验是在游泳池式 重水反应堆进行的,通过上式,可以推算出该探 测器在轻水堆核电厂堆芯的灵敏度。

(2)用铑探测器重水堆灵敏度刻度值推算其 不同中子温度下的重水堆灵敏度

还可以通过下式推算出该探测器在不同中 子温度下的重水堆灵敏度。

$$I_{\pm \pm \pm \pm}(T) = a_{\pm \pm \pm \pm 80^{\circ}} \frac{g(T)}{g(80^{\circ}C)} + b_{\pm \pm \pm \pm} r_{\sqrt{T/T_0}} (38)$$

通过上式,可以推算出该探测器在重水堆 核电厂堆芯的灵敏度。

6.2.6 上述公式的应用验证

本论文第二篇将用 6.2 节介绍的公式、方法 进行灵敏度计算,并与用其他方法的相关计算 结果进行比较,以验证本节提出的方法、公式、 技术路线的科学性、可信性。

7 钒探测器的 K 因子计算模型、结果 及分析

7.1 计算模型

钒的中子俘获截面符合 1/v 率,钒探测器的 K 因子计算模型与铑探测器的热中子 K 因子计 算模型相同,如下:

钒探测器热中子 β 逃脱因子:
$$K_{\pm\beta\beta\pm\bar{m}} = \int_{0}^{E_{\beta}} \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' \right\} dE$$

钒探测器热中子 β 有效因子: $K_{\pm\beta\bar{n}\pm\bar{n}\pm} = \int_{E_{0}}^{E_{\beta}} \left\{ P(E) \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' \right\} dE$
钒探测器热中子 β 穿越因子: $K_{\pm\beta\bar{n}\pm\bar{n}\pm} = \frac{K_{\pm\beta\bar{n}\pm\bar{n}\pm}}{K_{\pm\bar{n}\pm\bar{n}\pm\bar{n}\pm}}$
$$= \frac{\int_{E_{0}}^{E_{\beta}} \left\{ P(E) \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' \right\} dE}{\int_{0}^{E_{\beta}} \left\{ \left(-\frac{dE}{dx} \right)_{E}^{-1} \int_{E}^{E_{\beta}} N_{1} \left[R(E') - R(E) \right] B(E') dE' \right\} dE}$$

7.2 计算结果

7.2.1 钒探测器轻水堆 K 因子计算结果

(1)钒探测器轻水堆*f*、*F*、*fF*因子计算结果 (见图 14)

钒探测器发射体热中子自屏因子f、热中子 注量率降低因子F参见文献[10]。

(2) 钒探测器轻水堆 K_{热β递脱}、K_{热β有效}因子
 计算结果(见图 15)

钒探测器的绝缘体厚度为0时,其*K*_{热β逃脱} 等于其*K*_{热β 看效}。 (3) 钒探测器轻水堆 K_{热β 穿越}因子计算结果(见图 16)

7.2.2 钒探测器重水堆 K 因子计算结果

(1)钒探测器重水堆*f*、*F*、*fF*因子计算结果 (见图 17)

(2) 钒 探 测 器 重 水 堆 K_{热β有效}、K_{热β穿越}、
 K_{热βšili}因子计算结果

钒探测器重水堆 K_{热β 有效}、K_{热β γik}、K_{热β γik}、K_{热β γik}
因子计算结果与其轻水堆的 K_{热β 有效}、K_{热β γik}
K_{热β jik}因子计算结果相同。

7.3 用钒探测器灵敏度 K 因子计算其单位长发射体灵敏度

7.3.1 钒探测器单位长发射体灵敏度计算公式

钒的中子俘获截面符合 1/v 率,钒探测器灵 敏度计算公式与铑探测器灵敏度计算公式的热 中子部分的公式相同,具体如下:

$$I = efFK_{\pm\beta\pi\lambda} \pi r_e^2 N \sigma_0$$
(39)

由于 $K_{\underline{k}_{\beta} f \underline{\alpha}} = K_{\underline{k}_{\beta} g \underline{k}} K_{\underline{k}_{\beta} \underline{\beta} \underline{k} \underline{R}}, 那么,$

$$I = efFK_{\underline{A}\beta\underline{w}\underline{R}}K_{\underline{A}\beta\underline{\sigma}\underline{w}} \ \pi r_e^2 N \sigma_0 \qquad (40)$$

式中,*f*:钒探测器发射体热中子自屏因子;*F*:钒 探测器发射体热中子中子注量率降低因子;其 他同上。

上述公式,既适用于轻水堆,也适用于重 水堆。如果知道某一探测器的灵敏度 K 因 子,就可以用上述公式[式(39)、式(40)]计算 该探测器的单位长发射体灵敏度。注意,这里 πr_e^N 与本文式(1)、式(2)中的 N_1 的物理内涵 相同。

钒的中子俘获截面符合 1/v 率,其g因子 等于1,且不随着中子温度的变化而变化,因 此,用上述公式计算出的钒探测器灵敏度,既 适用于游泳池式实验堆,也适用于核电厂等动 力堆。

7.3.2 钒探测器重水堆灵敏度与轻水堆灵敏度 的关系

如果知道钒探测器在轻水堆的灵敏度(理 论计算值或灵敏度刻度值),那么可以直接推算 该探测器在重水堆的灵敏度。计算公式为:

$$I_{\pm x \pm z \pm g} = \frac{I_{\pm x \pm z \pm g} \times F_{\pm x \pm}}{F_{\pm x \pm}}$$
(41)

反之,亦然。

8 铑、钒探测器灵敏度 K 因子计算结 果检验

为了验证本文灵敏度 K 因子理论模型的科 学性、可行性,检验本文给出的灵敏度 K 因子的 计算结果的可信性,现通过以下三种途径,从不 同角度、不同侧面对本文给出的铑、钒探测器灵 敏度 K 因子计算结果进行检验。

8.1 本文灵敏度 K 因子计算结果与其他文献 发表的灵敏度 k 因子计算结果相互比较

现在把本文给出的灵敏度 K 因子计算结果 与目前能够收集到的其他论文给出的相关灵敏 度 K 因子计算结果进行比较。

由于有的文献没有给出具体数据,只给出 灵敏度 K 因子的变化曲线图。因此,有些文献 的 K 因子是依据 K 因子的变化曲线图测算出 来的。具体做法为:依据发射体直径、热中子吸 收截面,计算出 $x(r_e \Sigma)^{[10]}$,然后从图中测算出 对应的灵敏度 K 因子的值。

由于各文献采用的长度单位的制式不同, 有的用公制,有的用英制。因此,与本节各比较 表中第一列的标称直径有差异的,本文在表中 分别标注出。

下列各比较表中,"本文"这一列对应的 数据,一般直接采用本文给出的数据;对于特殊 的探测器的直径、绝缘体厚度,用本文已知数据 推算。

下列各表中,"比较"一列或一行对应的数 据为 K 因子的相对比值,比较时以本文给出的 数据为 1.0。

到目前为止,能够收集到的其他论文发表的相关灵敏度 K 因子都是热中子灵敏度 K 因子,因此,下述比较,仅限于热中子灵敏度 K 因子之间的比较(表 13 除外)。

8.1.1 铑探测器热中子自屏因子f₁比较(见表11)

表 11 铑探测器热中子自屏因子 f₁ Table 11 Thermal neutron self-shielding factor f₁ of Rh detector

发射体直径 /mm	文献[1]	本文(直径/mm)	文献[7]	文献[10](x=r _e ∑)	比较
0.254	0.85	0.85	0.85	0.86(0.1384)	1.0 : 1.0 : 1.0 : 1.01
0.508	0.73	0.7391 (0.5)	0.73	0.74 (0.2768)	0.987 : 1.0 : 0.987 : 1.001
0.762	0.64	0.639	0.64	0.64 (0.4152)	1.001 : 1.0 : 1.001 : 1.001
1.016	0.57	0.5758(1.0)	0.57	0.57 (0.5537)	0.989 : 1.0 : 0.989 : 0.989
1.270	0.51	0.515	0.52	0.51 (0.6921)	0.99 : 1.0 : 1.009 : 0.99

表中,第5列中 $x=r_e \Sigma$ 的物理内涵见文献[10]。

8.1.2 钒探测器自屏因子f比较(见表12)

表 12 钒探测器自屏因子 fTable 12 Thermal neutron self-shielding factor f of V detector

发射体直径/	文献	本文	文哉[7]	文献[10]	文献[2]	山坊
mm	[1]	(直径/mm)	又瞅[/]	(直径/mm)	(直径/mm)	
0.508	0.988	0.9885(0.5)	0.987	0.9882(0.5)	0.988	0.999 : 1.0 : 0.998 : 1.0 : 0.999
1.016	0.976	0.9774(1.0)	0.975	0.9767(1.0)		0.998:1.0:0.997:0.999:空
1.524	0.964	0.9665(1.5)		0.9654(1.5)		0.997:1.0:空:0.999:空
2.032	0.953	0.9559(2.0)		0.9543 (2.0)	0.954 (2.0) 0.952	0.997:1.0:空:0.998:0.998
2.540	0.941	0.9477(2.5)		0.9434(2.5)		0.993:1.0:空:0.995:空

文献[10]指出,当x(r_e∑)≪1时,f可以用近似式(3)(f(x)=1-(4/3)x+1.246x²)计算;因此,表12中文献[10]的数据是通过文献[10]的式(3)计算获取的。

8.1.3 铑探测器超热共振中子自屏因子f2比较(见表13)

	表 13	铑探测器超热共振中子自屏因子 <i>f</i> 2
Table 13	epi-thermal re	sonance neutrons self-shielding factor f_2 of Rh detector

发射体直径 /mm	本文 /mm	文献[11]图11	文献[11]附录 E 表Ⅱ	比较
0.2	0.5455	0.55	0.547	1.0 : 1.008 : 1.002
0.4	0.4080	0.41	0.409	1.0 : 1.005 : 1.004
0.6	0.3396	0.34	0.339	1.0 : 1.001 : 1.00

计算文献[11] 附录 E 中表 II 中的 $\beta = \sum r_e$ 值时,取¹⁰³Rh 的共振峰值截面为 4500b,忽略其散射截面。

8.1.4 钒探测器热中子中子注量率降低因子 F 比较(见表 14)

		表 14 钒挤	采测器热中子中子注量	率降低因子。	F			
Table 14Thermal neutron flux depression factor F for vanadium detectors								
文献	本文	文献[2]	文献[10](∑r _e)	本文	文献[2]	文献[10](∑r _e)		
发射体直径 /mm	0.50	0.508	0.50(0.0088)	2.0	2.0	2.0(0.0354)		
F	0.9960	0.996	0.9960	0.9569	0.957	0.9569		
比较	1.0	1.0	1.0	1.0	1.0001	1.0		

文献[10]的中子注量率降低因子 F 是据文献[10]式(3)、式(5)、式(6)计算的。表中 $\sum r_e$ 的物理内涵见文献[10]。

8.1.5 探测器 K_{热β逃脱}因子比较(见表 15)

	铑探测器 K 热 β 逃殿 因子					钒探测器 K 热角递服因子				
发射体 直径 / mm	文献 [1]	本文 (发射体直 径 /mm)	文献 [7]	比较	发射体 直径 / mm	文献 [1]	本文 (发射体直 径 /mm)	文献 [7]	比较	
0.254	0.787	0.746	0.79	1.055 : 1.0 : 1.059	0.508	0.768	0.805(0.5)	0.77	0.954 : 1.0 : 0.956	
0.508	0.623	0.5635(0.5)	0.63	1.105 : 1.0 : 1.118	1.016	0.597	0.6243(1.0)	0.61	0.956 : 1.0 : 0.977	
0.762	0.496	0.3939(0.8)	0.51	1.259 : 1.0 : 1.294	1.524	0.469	0.4808(1.5)		0.975:1.0:空	
1.016	0.401	0.3224(1.0)	0.41	1.243 : 1.0 : 1.271	2.032	0.375	0.3768(2.0)		0.995:1.0:空	
1.270	0.331	0.2719(1.2)	0.34	1.217 : 1.0 : 1.250	2.540	0.309	0.3189(2.5)		0.968:1.0:空	

表 15 探测器 $K_{\pm\beta$ 逃殿</sub>因子 Table 15 $K_{\text{thermal}\beta \text{ escape.}}$ of detector

8.1.6 钒探测器和铑探测器 K_{热β穿越}因子比较 (见表 16)

表 16 (钒探测器和铑探测器 K_{热β穿越}因子 Table 16 K_{thermalβ pass through} of V and Rh detector

探测器种类		钒探测	则器		老探测器				
文献	本文	文献[7]	本文	文献[7]	本文	文献[7]	本文	文献[7]	
发射体直径 /mm	0.5	0.508	1.0	1.016	0.5	0.508	1.0	1.016	
绝缘体厚度 /mm	0.25	0.254	0.25	0.254	0.25	0.254	0.25	0.254	
绝缘体材料	Al_2O_3	MgO	Al_2O_3	MgO	Al_2O_3	MgO	Al_2O_3	MgO	
$K_{\pm \beta \beta \overline{ m p} \overline{ m s} \overline{ m d}}$	0.90	0.85	0.85	0.81	0.8556	0.83	0.8124	0.78	
比较	1.0	0.944	1.0	0.953	1.0	0.97	1.0	0.96	

8.1.7 铑探测器和钒探测器 K_{热β 有效}因子(见表 17)

表 17 钒探测器和铑探测器 $K_{h,\beta,d,\phi}$ 因子 Table 17 $K_{thermal\beta,effective}$ of V and Rh detector

探测器种类	铑探测器										
文献	文献 [7]	本文	文献 [7]	本文	文献 [7]	本文	文献 [2]	文献 [7]	本文	本文	文献 [2]
发射体直径 /mm	0.508	0.5	1.016	1.0	0.508	0.5	0.508	1.016	1.0	2.0	2.0
绝缘体厚度 /mm	0.254	0.25	0.254	0.25	0.254	0.25	0.254	0.254	0.25	0.35	0.35
绝缘体材料	MgO	Al_2O_3	MgO	Al_2O_3	MgO	Al_2O_3	Al_2O_3	MgO	Al_2O_3	Al_2O_3	Al_2O_3
$K_{\pm \beta \pi \dot{\chi}}$	0.5229	0.4831	0.3198	0.2619	0.6545	0.725	0.649	0.4941	0.5344	0.286	0.262
比较	1.082	1.0	1.221	1.0	0.903	1.0	0.895	0.924	1.0	1.0	0.916

8.2 铑探测器 K 因子计算结果自我相互检验

为了检验计算结果的准确性、可信性,以及 相互之间的吻合性、自洽性,这里对铑探测器 K 因子计算结果进行进一步自我相互检验。

数据检验的方式、方法简述如下:(1)选择典型案例,即确定探测器的发射体直径、绝缘体厚度,以及其所处的堆型、中子场环境($r\sqrt{T/T_0}$); (2)选择 6.1 节四种不同的计算铑探测器灵敏度的公式中的一种;(3)针对案例及选定的公式,从 本文 K 因子计算结果中查找每一公式需要的 K 因子;(4)针对案例,从文献[3]中查找每一案例的 a、b 值;(5)分别用不同公式计算每一案例的 单位长发射体灵敏度。结果见表 18。计算结果 相互吻合,十分理想。

8.3 铑探测器 K 因子理论计算结果与基于实验数据推算出的 K 因子相互比较(详见本论文第二篇)

案例	发射体直 r	径 1 mm、绝缘体厚度 $\sqrt{T/T_0} = 0.09$ 、轻水均	€ 0.3 mm、 隹	发射体直径 1.6 mm、绝缘体厚度 0.3 mm、 $r \sqrt{T/T_0} = 0.06$ 、轻水堆			
公式	(28)	(31)	(8)	(29)	(30)	(8)	
有关K因	$K_{fF} = 0.3694$	$f_1F_1=0.4618$	a值=1.639	$K_{fF} = 0.2718$	$f_1F_1=0.3170$	a值=1.798	
丁奴掂	$K_{\beta \overline{\eta} \overline{\chi}} = 0.3106$	$K_{\pm\beta}$ $_{\pm\beta}$ $_{\pm\beta}$ $_{\pm\beta}$ $_{\pm\beta}$ $_{\pm\beta}$ $_{\pm\beta}$ $_{\pm0.7842}$	b值=11.14	$K_{\beta \ int int int int int int int int int int$	$K_{\pm\betaam}=0.15/8$ $f_2F_2=0.1663$	b值=19.78	
		<i>f</i> ₂ <i>F</i> ₂ =0.2250 <i>K</i> _{超振β逃脱} =0.5778 <i>K</i> ₂₂₅₆ = 0.8608			К 超振 β 有效 =0.4664		
结果 /A	2.6383×10^{-21}	2.6411 × 10 ⁻²¹	2.6416×10^{-21}	2.9737×10^{-21}	2.9842×10^{-21}	2.9848×10^{-21}	
比较	0.9987	0.9998	1.0	0.9962	0.9997	1.0	

表 18 计算结果的准确性、可信性,以及相互之间吻合性检验 Table 18 Verification of accuracy, credibility and consistency of calculation results

9 结论

(1)本文对β衰变型自给能探测器灵敏度K 因子进行了较全面、深入、系统的研究,建立了 铑探测器热中子K因子、超热共振中子K因子、 中子场全谱中子K因子的完整理论体系。

(2)本文从不同角度、不同侧面对本文给出的铑、钒探测器灵敏度 K 因子计算结果进行检验(第8节)。结果表明,本文灵敏度 K 因子理论模型和计算公式是科学、可行的,计算结果是可信的。

(3) 铑探测器的热中子 K_{热β 逃脱}、K_{热β 有效}、 K_{热β 穿越}及超热共振中子的 K_{超振β 有效}、K_{超振β 速脱}、 K_{超振β 穿越}和堆型及中子温度无关,只和发射体 直径及绝缘体厚度、材料有关。但全谱中子的 K_{β 逃脱}、K_{β 有效}、K_{β 穿越}和堆型有关,但影响不大。 轻水堆的 K_{β 逃脱}、K_{β 有效}、K_{β 穿越}和重水堆的 K_{β 逃脱}、 $K_{\beta \, \bar{n} \bar{\chi}}$ 、 $K_{\beta \, \bar{\gamma} \bar{k} \bar{k}}$ 之间可以近似相互代用。全谱中子 的 $K_{\beta \, \bar{\kappa} \bar{k}}$ 、 $K_{\beta \, \bar{\gamma} \bar{k} \bar{k}}$ 和中子温度有关,经分析 认为,本文灵敏度 K 因子的计算结果不仅可应 用于中子温度为 20℃的中子场,还可以近似应 用于其他温度下(20℃~420℃)的中子场,最大 相对误差不超过 1%(第5节)。

(4) 钒探测器的重水堆*K*_{热β有效}、*K*_{热β穿越}、 *K*_{热β速脱}与其轻水堆的*K*_{热β有效}、*K*_{热β穿越}、*K*_{热β速脱} 相同,且与中子温度无关。

(5) 计算结果符合预期: 以铑探测器为例, ① $K_{BEB,BBR}$ 永远大于 0.5; ②在直径相同的情况 下, $r\sqrt{T/T_0}$ 越大, $K_{\beta BR}$ 越大; ③ $K_{BEB,BAR}$ 大于 $K_{B,BAR}$, 直径越大, 差别越明显; ④ K_{BAR} 随着 $r\sqrt{T/T_0}$ 的增加而变大; ⑤在发射体直径、绝缘 体厚度相同的情况下, $K_{BEB,BR}$ 地 $K_{B,BR}$ 略大 些; ⑥ K_{BR} 随着 $r\sqrt{T/T_0}$ 的增加而变大等。这 些都符合预期。

10 结语

本文计算中,设定中子温度为 20 °C,设定 ¹⁰³Rh 的 g(20 °C)=1.023, $s_0=s$ (20 °C)=7.255,设 定 Al₂O₃ 的密度为 3.2 g·cm⁻³,¹⁰³Rh 的共振峰值 截面按 4500 靶考虑,其他数据取常规数据。

本文作者还将通过从实验数据推算出的 K 因子对本文采用的灵敏度 K 因子理论和计算模 型的科学性可行性、计算结果的可信性进行进 一步验证,详见本论文第二篇。

感谢中国原子能院史永谦研究员、张应超 研究员的指导、帮助,感谢于岚、徐卫、张曼的支 持帮助。

参考文献

- H.D. Warren, Calculation Model for Self-Powered Neutron Detector [J]. Nuclear Science and Engineering, 1972, 48: 331-342.
- [2]毕光文. 钒自给能探测器中子响应计算方法 [J]. 核 技 术, 2017, 40 (6): 1-6.
- [3] 于稼驷.β 衰变型自给能堆芯中子探测器灵敏度数学模型
 [J].核安全, 2023, 22(4): 94-106.
- [4]杨有琏.铑自给能中子探测器的灵敏度[J].核电子学与探测技术,1989,9(3):135-141.
- [5]郑军伟,柳继坤,牛茂龙,等.β 衰变自给能中子探测器灵 敏度影响因素研究[J].核电子学与探测技术,2017,037
 (3): 302-307.

- [6]张睿,曾力.铑自给能探测器的测量信号计算方法研究[J].仪器仪表用户,2018,25(1):88-90.
- [7] Joseph M. Harrer and James G. Beckerley, Nuclear power reactor instrumentation systems handbook [M].page 50–56, Volume 1, U. S. Atomic Energy Commission, 1973.
- [8]张英振,自给能堆芯中子探测器绝缘体空间电荷初步探讨[J].核动力工程,1980(3):171-177.
- [9] C.H. Westcott, Effective Cross Section Values for Wellmoderated Thermal Reactor Spectra [R]. AECL-1101 (1962).
- [10] W. Jaschic. Model for Calculating Prompt-Response Self-Powered Neutron Detector [J]. Nuclear Science and Engineering, 1974, 53: 61-78.
- [11] T.I. 马尔丘克.《核反应堆的数值计算法》[M].飞跃译,北 京:科学出版社, 1959.
- [12] 张英振,万东平.铑自给能探测器性能研究[J].原子能科 学技术,1980(1):41-49.
- [13] G. Knill. Continuous In-pile Monitoring of Thermal Neutron Flux Intensity Using Activation Detector [C]. Nucleonic Instrumentation (IEE Conference Publication No.47), 77-84, Published by the Institution of Electronical Engineers (1968).
- [14] 李兆桓.用活化箔法测定游泳池式反应堆栅格内热中子通量 谱[J].原子能科学技术,1980(3):309-315.
- [15] PLUTO: Materials. Testing Reactor at Harwell [J], NATURE, Vol. 180 952 November 9, 1957.
- [16] Paul Mobbs. The Safety of the UKAEA Harwell Establishment and in particular the Safety of the Harwell Materials Testing Reactors [R] . A special report produced for the Commons Select Committee on Energy.

Study on Sensitivity K Factor of Self–powered Detector with β Decay

(Part 1: Theoretical analysis, calculation model and calculation results)

Yu Jiasi

(Ministry of Ecology and Environment of the People's Republic of China, Beljing 100006, China)

Abstract: In this paper, the sensitivity K factor of self-powered detector with β decay is studied comprehensively, deeply and systematically. A complete theoretical systems of thermal neutron K factor, epithermal resonance neutron K factor and neutron field full spectrum neutron K factor are established. The mathematical models and formulas for calculating these K factors are given, and the calculation results of each K factor are provided. The relationship between K factor of light water reactor and K factor of heavy water reactor with detectors of the same kind is demonstrated. By comparing with sensitivity K factor published in other literatures, it is verified that the theoretical model of sensitivity K factor proposed in this paper is scientific, and the calculation results of sensitivity K factor given in this paper are credible. **Key words**: self-powered; detector; sensitivity; K factor.

(责任编辑:徐晓娟)

核安全

第 23 卷第 1 期

2024年2月

NUCLEAR SAFETY

张振强,何先华,张德亮.AP系列压水堆核电厂冷态性能试验风险识别与管理[J].核安全,2024,23(1):81-87. Zhang Zhenqiang, He Xianhua, Zhang Deliang. Risk Identification and Management of AP Series Pressurized Water Reactor Nuclear Power Plant Cold Performance Test [J]. Nuclear Safety, 2024, 23(1):81-87.

AP系列压水堆核电厂冷态性能试验风险识别与管理

张振强, 何先华, 张德亮

(国核示范电站有限责任公司,威海 264200)

摘要: AP系列压水堆机组(如 AP1000、国和一号等)相较于 M310 机组的冷态性能试验,在试验压力及温度、水压试验边界、试验过程安排等方面存在较大差别。本文结合 三门、海阳 AP1000 的冷试准备和经验反馈及国和一号沙盘推演的成果,梳理和分析 AP 系列压水堆冷试准备及实施风险、应对措施,为后续 AP系列压水堆冷试准备及实施的安 全、质量和进度管理提供参考。

关键词: 冷态性能试验; AP 系列压水堆机组; 风险识别与管控 中图分类号: TM623.2 文章标志码: A 文章编号: 1672-5360 (2024) 01-0081-07

冷态性能试验(以下简称冷试)是核电机组 建设的重要里程碑,也是核电机组由土建安装 阶段进入调试阶段的典型标志。冷试的主要目 的是在实体工况下,以高于主系统设计压力的 试验压力对主系统和相关辅助系统的高压部分 进行强度性水压试验,验证 RCS 压力边界(包 括 RCS 管道焊缝和设备,以及接口系统的高压 部分)的完整性和密封性,确保反应堆一回路 系统在正常运行以及设计基准事故工况下是安 全的,满足核安全法规要求。根据 ASME NB-6000、NC-6000 和 ND-6000 的规定,水压试验 压力为不低于设计压力的 1.25 倍,不超过设计 压力的 1.325 倍。设计压力为 17.2 MPa, 即试 验最低压力要高于 21.5 MPa,最高压力要小于 22.79 MPa;试验期间温度控制在 25℃~65.6℃, 且在整个打压期间温度不能低于 25℃。

1 冷态性能试验概述

根据冷试的目的及要求,冷试前需确保一 回路及其连接系统的高压部分管线完成安装, 并打压相关系统及主要支持系统,完成部分预 运行试验,具备支持冷试实施的条件。AP系列 冷试主要涉及的系统包括:反应堆冷却剂系统 (RCS)、反应堆本体系统(RXS)、非能动堆芯冷却 系统(PXS)、正常余热排出系统(RNS)、化学与 容积控制系统(CVS)及水、电、仪、冷源等重要 支持系统。

1.1 冷试前相关系统状态要求

根据机组调试大纲要求,冷试前各主要系 统及相关支持系统需具备如下条件:

(1)完成堆内构件检查及反应堆扣盖;

(2)反应堆冷却剂泵逻辑试验完成,并具备

收稿日期: 2023-05-10 修回日期: 2023-06-05 作者简介:张振强(1990-),男,现主要从事调试监督与管理工作 研究与探讨

运行条件;

(3) RNS 可投入运行控制一回路温度;

(4) CVS 可以投入运行,给一回路补水,具 备控制一回路压力的能力;

(5) PXS 完成反应堆压力容器扣盖后流道 试验;

(6) CCS 可为反应堆冷却剂泵及变频器等 设备提供冷却水;

(7) SWS 能够为 CCS 提供冷却水,如正式 系统不可用,应采取临时措施对 CCS 进行冷却;

(8) DWS 具备供应合格除盐水的能力;

(9) CAS 满足一回路水压试验相关气动阀 用气需求;

(10)电气系统具备为主泵、变频器、一回路 水压试验泵以及相关设备供电能力;

(11)通风系统满足一回路水压试验相关厂 房通风需求;

(12)一回路水压试验相关区域正式消防可 用,应满足消防需求,如正式消防不可用,可采 取临时消防,确保满足现场的消防需求。

因此,冷试前需完成除盐水可用、倒送电、 主控室可用、一回路联合冲洗、开盖流道试验、 扣盖流道试验、调试冷源可用等关键调试任务, 还要满足核岛送冷风、辅锅供暖可用等需求,为 现场调试工作提供重要的环境支持。

装卸料机调试、安全壳强度试验及泄漏 率试验、蒸汽发生器二次侧水压试验可根据 冷试前主关键路径工作推进情况进行合理安排,但其试验完成情况不作为冷试开始的技术 条件。

1.2 冷试临措准备

AP 系列压水堆机组冷态性能试验期间需 要使用相关临措,主要包括临时打压装置、超压 保护装置、数据采集及监测装置等,各临时措施 承压等级需满足打压试验压力要求、焊接临措 需完成 RT、各临措均需完成测试或校验。

1.2.1 临时打压装置

临时打压装置主要由两台水压试验泵(柱 塞泵)、调节阀、逆止阀组成。一回路水压试验打 压装置如图1所示。

(1)水压试验泵一用一备,独立电源,避免单 一的电源或泵故障;

(2)调节阀用于升压期间的升压速率控制;

(3) 逆止阀安装在每台泵的出口, 防止一台 泵运行对另一台造成水流冲击。

1.2.2 超压保护装置

一台弹簧式加载式安全阀提供水压试验期间的超压保护,安装在稳压器顶部。此外,在系统低点设置了串联的两台手动球阀作为超压保护的备用手段,当安全阀未自动起跳时,操作人员可通过就地打开手动球阀进行泄压。

1.2.3 数据采集及监测装置

数据采集及监测装置主要包括温度变送器、压力变送器及数据采集装置。

Fig.1 Primary hydraulic test pressure device

(1)温度变送器:用于监视主设备温度,布 置在 RV 顶盖法兰、RV 筒体、稳压器、SG 管板、 PRHR HX 等位置。

(2) 压力变送器:用于监视一回路压力,布 置于稳压器安全阀及其余设计评估的压力测点 位置。

(3)数据采集装置:用于记录和显示温度、压 力数据,两套设备同时工作,避免系统试验过程 中的数据丢失。

1.3 冷试实施过程

冷态性能试验系统,以一回路建立半管水 位、热管段半管液位约70%开始抽真空为起点, 至一回路降压至环境压力平台结束,主要试验 活动包括:一回路真空充注→主泵首次启动→ 一回路升温→水压试验边界建立→一回路升降 压及检漏→试验后恢复^[1]。一回路水压试验实 施过程如图2所示。

Fig.2 Implementation process of primary hydraulic test

2 AP 系列与能动型压水堆的差异

AP 系列压水堆机组(如 AP1000、国和一号等)相较于 M310 机组的冷态性能试验,在试验 压力及温度、水压试验边界、试验过程安排等方 面存在较大差别。

2.1 技术方面

2.1.1 平台试验

M310 机组冷试期间一般设置多个压力平台,在各平台执行一回路相关系统冷态工况下的相关试验;AP系列除启动主泵给一回路升温之外,不执行任何平台试验,聚焦开展打压的相关准备和实施工作。

2.1.2 打压实施

M310 在设计压力下,依靠正式的设备(包 括泵、仪表)维持一回路状态,超设计工况下将 相关仪表等设备退出,依靠临时仪表支持打压; AP 系列一回路升温完成,就将所有的仪表等正 式设备隔离,依靠临时打压泵、临时仪表、临时 数采装置执行打压。

2.1.3 泄漏率测量

M310 打压期间依靠化容控制系统容控箱 执行一回路泄漏率测量;AP 系列在冷试期间仅 在各压力平台执行焊缝及机械连接件检查,不 执行泄漏率计算。

2.2 风险识别及管理

(1) 基于 AP 系列打压技术特点,本文认为 应当结合 AP1000 等机组冷试经验反馈,重点聚 焦边界完整性、临措管理有效性等方面开展风 险识别。

(2)针对识别出的风险,本文认为应当细化 分解应对措施,通过冷试技术准备、人员准备、 推演演练等措施持续强化风险管控,避免问题 升级。

3 冷态性能试验主要风险

结合三门、海阳 AP1000 调试工作经验及同 行电站的工作经验,本文认为应当针对冷试的 准备及实施,梳理相关风险,主要包括冷试前系 统调试试验质量及进度管理风险、临措管理风 险、主泵首次启动风险、边界泄漏处理等典型风 险。一回路水压试验主要风险如图3所示。

图 3 一回路水压试验主要风险 Fig.3 Key risks of primary hydraulic test

3.1 冷试前系统调试质量及进度管理风险

冷试前主要系统及其支持系统需完成相关 的调试试验活动,其质量及进度是冷试顺利开 展的前提条件。

3.1.1 相关系统流道试验结果不合格导致多次 试验突破冷试目标时间节点的风险

相关系统流道试验完成且试验结果合格是 冷试开始的必要条件,根据三门、海阳 AP1000 的调试经验,流道试验不合格会导致试验多次 重复执行,制约堆腔主关键路径的推进及冷试 开始。

应对措施:

(1)针对冷试相关系统流道试验可能存在的数据不合格风险,本文认为应当提前制定应对措施,如准备备用孔板、预先进行孔板尺寸计算、联系安排好孔板加工单位;

(2)流道试验正式、临时孔板由同一厂家供货,试验期间如需对孔板尺寸进行调整,可考虑 在现场加工临时孔板以节省试验工期;

(3)流道试验要重点关注临时仪表测点的设 计和布置,确保测量数据的有效性和准确性。

3.1.2 相关系统移交滞后制约冷试节点目标实现的风险

冷试前各主辅及支持系统无法按计划 TOP (建安向调试)移交,可能导致调试试验逻辑频繁

调整、冷试前试验的完整性无法按计划完成,导 致冷试节点目标无法按期实现。

应对措施:

(1)制订合理可行的冷试准备计划,明确相 关 TOP 移交包的移交需求及匹配的调试工作 计划;

(2)设置专项调试移交组织负责 TOP 移交 的管理及推动,督促加大施工资源的投入,确保 冷试关键包具备可调试性并按时移交;

(3)除主关键路径相关移交包外,重点关注 冷试前冷源、水、电、仪控等重要支持系统,按调 试需求逻辑推动相关系统 TOP 移交及可用;

(4)建立覆盖设计、采购、施工、调试、生产的 移交包责任人矩阵,以移交包为单位开展小组 运作,主动前探,在现场安装过程中提前识别移 交制约问题并处理,减少正式联检时的意见项 数量,提升 TOP 移交质量和工效;

(5)强化遗留项管理,通过计划会议、日常跟踪、承包专业消缺队伍等措施,推动 TOP 遗留项按计划完成处理,确保现场调试工作的开展。

3.2 临时措施管理风险

冷态性能试验期间需使用到部分重要临 措,包括临时打压装置、超压保护装置、数据采 集及监测装置等,临措的质量是影响冷试顺利 实施的重要因素。 3.2.1 临时措施管理风险

临措的台账建立及完整的设计、采购、施 工、验收及管理,涉及的领域较多,技术要求较 高,如无法实现闭环管理,会对冷试按计划顺利 开展产生较大影响。

应对措施:

(1)细致梳理冷试需用的临时措施并建立跟 踪台账,明确每项临时措施的实施及恢复的要 求、计划,并进行专项跟踪;

(2)对于重要临时措施的可行性和可靠性, 应进行充分的评估和论证,并制定专门的实施 及验证方案;

(3)冷试的辅助系统,要尽量减少为实现系 统功能而采取的临时措施,为冷试及后续热试 等重要调试节点奠定基础。

3.2.2 临时数据采集系统方案不完善存在影响 试验成败的不确定因素

临时数据采集装置(DAQ)是冷试期间系统 数据采集、状态监视的重要手段,DAQ的可靠 性、准确性是冷试顺利开展的重要支持。DAQ 的设计规划、调试等存在影响冷试顺利完成的 风险。

应对措施:

(1)从质保角度考虑,在试验前重点关注数 采系统设计、仪表选型、检定、校准、供电电源、 试验期间运维、组态参数修改授权、数据采集与 数据最终分析评价的准备情况,仪表投运前仪 表管线冲洗、仪表投运窗口安排等;

(2)冷试数据采集装置考虑冗余设置,升压 过程中,在一台数采装置失去压力信号后,应考 虑应急预案和措施,通过第二台数采装置监视 信号。

3.2.3 临时打压装置故障风险

AP 系列压水堆机组采用临时打压装置实 现冷试打压,临时打压装置的安装、调试等存在 影响冷试顺利完成的风险^[2]。

应对措施:

(1)全面梳理水压试验泵所需的备件,备件 配置满足水压试验前对泵进行维护保养及试验 期间故障维修的需求; (2)编制完善的临时打压装置验证方案, 并在冷试前开展全面验证,确保临时打压装置 可用;

(3)提前组织操作人员培训和演练水压试验 泵的压力调节阀控制,确保试验期间精确地控 制压力;

(4) 在试验执行过程中,提前将备用泵投入 热备用状态,在主打压泵出现故障的情况下, 确保备用泵能够快速投运以尽快维持一回路 压力;

(5)在故障泵短时间内无法处理的情况下, 只有一台泵可用,需要根据系统所处的压力平 台进行即时技术决策。

3.2.4 冷试临时通信可靠性风险

冷试试验及涉及的相关区域通信需求范围 较大,各区域之间的通信不畅会导致试验期间 在信息沟通、紧急干预、风险管控方面的风险。

应对措施:

(1)提前梳理冷试相关的通信需求,确保相 关区域的正式通信系统可用,包括广播、电话 等,确保实现冷试期间相关区域之间通信顺畅, 通过正式系统提升通信可靠性;

(2)临时通信设置充分考虑冗余及单一故障 风险,参照同行良好经验,提前准备足够数量、 足够功率的通话设备或固定电话,并在试验前 组织通信演练;

(3)合理规划冷试指挥中心,冷试指挥中心 的选取应综合考虑通信便利和信息传递等必要 因素。

3.3 主泵首次启动风险^[3]

主泵是 AP 系列压水堆机组冷试期间启动 的最重要的设备,主泵的顺利启动、运行是冷试 推进的重要前提。

3.3.1 一回路压力波动导致主泵意外停运风险

主泵启动和运行期间,一回路压力调节阀 的 PID 参数设置、阀门调节特性、排气充分程度 等都将决定一回路压力是否稳定,是否存在一 回路的压力波动导致主泵意外停运的风险。

应对措施:

(1)在主泵启动前对 CVS 压力调节阀进行

验证,优化 PID 参数以确保调节性能良好;

(2)结合主泵净正吸入压头相关保护定值, 确定恰当的主泵启动初始一回路压力;

(3)制定完善的一回路排气方案,确保一回路排气充分,避免主泵启动时出现大的压力 瞬态;

(4)试验前,开展边界检查,针对边界垫片、 密封件进行深入排查,排除临时垫片风险;

(5)组织开展全面的主泵首次启动风险分 析并制定完整的应对措施,必要时针对主泵首 次启动建立专项组织,包含设计、厂家、施工、调 试、运行各领域人员,开展全面的技术准备、试 验实施方案及应急干预。

3.3.2 主泵首次启动期间因电气原因引起主泵 跳停风险

电气定值的设置、主泵相关电气试验的完 成情况、变频器的状态等都会给主泵首次启动 带来风险。

应对措施:

(1)关注主泵电机的电气保护定值设置,在 主泵启动前对保护定值进行确认;

(2)关注建安及调试期间主泵变频器的维护 保养,明确建安单位和调试队的职责及边界,确 保保养工作在设备安装后能够有效落实;

(3)在主泵首次启动风险分析及应急预案中 增加变频器调试的相关风险及应对措施;

(4) 在主泵安装后到首次启动前,以恰当周 期执行主泵绕组绝缘检查,同时在主泵启动相 关应急预案中增加主泵绕组绝缘测量内容。

3.3.3 主泵振动风险

主泵作为大型转动设备,在首次启动时其 振动监测、保护等存在较大风险。

应对措施:

(1)提前与设计、厂家沟通确认主泵的振动 限值和参考依据。通过对主泵出厂试验过程和 报告的研究,获取现场振动的期望值,并在相应 试验规程及预案等文件中体现。

(2)在主泵首次启动阶段,除了投运振动监测系统 SMS 外,额外增加就地振动测量措施,确保主泵振动测量数据的准确性,为主泵运行

监测及保护干预提供输入。

(3)关注 SMS 振动数据的滤波阈值,提前评 估其合理性。结合主系统固有频率和主泵振动 频率,提前评估有无共振可能,如有必要,提前 制定应对措施。

(4)提前制定 SMS 系统中主泵振动报警为 闪发报警判断的具体原则,并纳入主泵首次启 动风险分析与预案中。

3.4 边界泄漏处理风险

冷态性能试验期间将在各压力平台进行泄漏检查,并且根据检查情况对泄漏问题进行处理。边界检查及泄漏处理的及时性和有效性, 是冷试顺利推进和成功的必要条件。

应对措施:

(1)建立专门的查漏组织机构,开展全面演练,明确查漏的问题反馈及响应机制,确保信息及时传递、问题及时干预。

(2)针对不同压力平台规划不同泄漏处理方案,简化汇报流程,提高决策效率。结合同堆型 经验,提前识别大概率风险点,准备预案工单以 便快速响应。

(3)提前核实明确技术规范中对不同尺寸阀 门的维修要求。对于不便隔离的漏点,规划冰 塞检修等应对措施。

(4) 梳理冷试边界下游的仪表清单, 评估仪 表阀组承压等级和试验期间的隔离措施, 形成 可以作为水压试验边界的仪表阀组清单。对于 不能承压的阀组, 规划在一、二次阀同时内漏的 情况下试压边界的建立和维持, 同时避免仪表 受到高压损坏。

3.5 冷试试验结果失效风险

冷试是在超设计压力情况下对一回路及其 相连接管线进行试压,在机组整个寿期内有执 行次数的限制,因此保证冷试结果的有效性对 于整个机组全寿期规划有极其重要的意义。根 据同行电站经验,冷试期间焊缝检查遗漏或水 压试验完成后发现边界内的管道、设备变更未 实施,都有导致水压试验结果失效的风险。

应对措施:

(1)冷试前按照设计文件和施工文件,详细

梳理水压试验边界内的焊缝并形成清单,通过 审查、批准环节确保边界清单的完整性。组建 专门的检查队伍,冷试前组织演练,确保检查过 程全面、高效、无遗漏。

(2)冷试前针对试压范围内系统及设备进 行全面核查,排除承压等级不满足要求的临时 措施,避免冷试过程中超设计压力状态下意外 失压。

(3)通过完整的设计、采购、现场安装、调试、 演练、应急预案等全链条管理,确保临时打压装 置及超压保护装置的可靠性,编制压力瞬态控 制预案,避免超设计压力状态下意外试压。

(4)冷试前,全面系统梳理试压范围内系统及设备的设计变更、临时变更、不符合项等,形成清单并逐项核实是否实施,避免冷试结果的有效性受到已发布未实施的变更项目影响。

(5)冷试后加强试压范围内系统及设备的设

计变更、临时变更、不符合项等管控,明确"非必要不变更"的原则,避免造成冷试结果失效。

4 结论

本文结合三门、海阳等同行电厂冷态性能试验的经验反馈,从质量、进度、临措、主泵、边界、试验结果等多方面梳理识别 AP 系列压水堆机 组冷试主要管理及技术风险,并提出解决措施, 为后续 AP 系列压水堆机组冷态性能试验的准 备及实施过程中的风险识别和管控提供参考。

参考文献

- [1]曹红军,闫修平.首台 AP1000一回路水压试验方案及风险分析[J].核安全,2013,12(2):39-44.
- [2]张正习,朱风耀,路遥.核电站一回路水压试验实践经验[J].电子测试,2018,(10):103-105.
- [3]曹晓哲,纳红卫,刘加合,等.AP1000核电站一回路水压试验分析[C].2014年中国工程电机工程学会年会论文集.合肥,2014.

Risk Identification and Management of AP Series Pressurized Water Reactor Nuclear Power Plant Cold Performance Test

Zhang Zhenqiang, He Xianhua, Zhang Deliang

(1 State Nuclear Power Demonstration Plant Co.Ltd, Shandong Weihai 264200 China)

Abstract: Compared with cold performance test of M310 unit, AP series pressurized water reactor unit (such as AP1000, GUOHE ONE, etc.) is quite different in test pressure and temperature, hydrostatic test boundary, test process arrangement, etc. This paper combs and analyzes the risks and countermeasures of AP series pressurized water reactor cold test preparation and implementation based on the experience feedback of Sanmen and Haiyang AP1000 cold test preparation and implementation and the results of Guohe No.1 sand table exercise, so as to provide reference for the subsequent AP series pressurized water reactor cold test preparation and implementation and the results of series preparation and implementation safety, quality and schedule management improvement.

Key words: cold performance test; AP series pressurized water reactor unit; risk identification and control

(责任编辑:梁晔)

核安全

NUCLEAR SAFETY

秦梓铭,季晨龙,尹泓卜. 耐事故燃料锆合金包壳 MAX 相材料 Cr₂AIC 涂层的研究进展[J]. 核安全,2024,23(1):88-94. Qin Ziming, Ji Chenlong, Yin Hongbu. Recent Progress of Cr₂AIC Coating of Max Phase Material for Accident-tolerant Fuel Zirconium Alloy Cladding [J]. Nuclear Safety, 2024, 23(1):88-94.

耐事故燃料锆合金包壳MAX相材料Cr,AlC涂层的研究进展

秦梓铭1,季晨龙1,尹泓卜2,*

(1. 中国人民解放军海军装备部,北京 100841; 2. 中国核动力研究设计院核反应堆系统设计技术 重点试验室,成都 610041)

摘要: MAX 相材料是一种三元层状结构类金属陶瓷材料的碳 / 氮化物,兼具金属和陶瓷的优良性能, MAX 相材料 Cr₂AlC 涂层材料因其优异的抗氧化性、耐腐蚀性和耐辐照性而具有应用于耐事故燃料锆合金包壳的潜力,本文综述了该领域 MAX 相材料 Cr₂AlC 涂层 材料的研究进展,总结了 Cr₂AlC 涂层材料的氧化行为、腐蚀行为、失效机制和改进方向 的进展情况。调研表明,对涂层进行表面改性,如引入中间层和在其表面添加金属层等, 可增强涂层的抗氧化和防腐蚀性能。本文通过对现有文献的调研,论述 Cr₂AlC 涂层的优 点和弊端,为进一步在航天、化工、核工业等领域的工程应用提供参考。

关键词: MAX 相材料; Cr2AlC; 耐事故燃料; 综述

中图分类号: TL341 文章标志码: A 文章编号: 1672-5360 (2024) 01-0088-07

耐事故燃料在福岛核事故后受到广泛关 注,事故工况下温度快速升高使得锆合金包壳 被高温蒸汽氧化腐蚀、劣化开裂、释放氢气,最 终导致堆芯熔化并发生氢气爆炸。因此,耐事 故燃料锆合金包壳在发生失水事故时耐高温水 蒸气氧化的能力是工程应用中关注的重点。从 现有工艺和经济性的角度考虑,通过增加涂层 材料的方式对耐事故燃料锆合金包壳进行表面 改性是有效提高其安全性和可靠性的重要途 径,这种方法可以保留锆合金包壳材料与原有 燃料的体系及制造工艺,继续发挥锆合金在辐 射环境中的低中子吸收截面的优势,因此使用 涂层材料是改善锆合金耐高温水蒸气氧化性能 的主要手段^[1,2]。在现有研究中,金属涂层(如 合金涂层等)、陶瓷涂层(如氧化物涂层等)以及 MAX 相涂层是具有应用潜力的候选材料。其 中,MAX 相材料是一种三元层状结构类金属陶 瓷材料的碳/氮化物,兼具金属和陶瓷的优良性 能,因其优异的导热性、导电性、耐腐蚀性^[3]、抗 氧化性和耐辐照性,而被用于航天、化工、核工 业等领域。本文简述事故工况下,MAX 相涂层 Cr₂AIC 材料应用于耐事故燃料锆合金包壳材料 中的氧化行为及失效机制等研究进展,并对其 后续使用进行了讨论。

1 MAX 相 Cr₂AIC 涂层的结构性能

MAX 相材料的结构通式为 M_{n+1}AX_n,其 中 M 是 Ti、V、Cr、Zr、Mo 等过渡金属,A 是 Al、

收稿日期: 2023-03-24 修回日期: 2023-03-28

作者简介:秦梓铭(1996—),男,助理工程师,硕士研究生,现主要从事核材料相容性研究工作

^{*} 通讯作者: 尹泓卜, E-mail: yhp1214@mail.ustc.edu.cn

Si等主族元素,X是C或N,其原子结构是六 方对称三元层状结构,其晶体结构是由近密堆 积的金属碳/氮化物(M₆X)八面体亚层和含 有A元素的片层交替排列组成,其空间点群为 P6₃/mmc,其晶胞结构有 211 相、312 相、413 相 三种,如图1所示。

Fig.1 The Crystal structure of MAX phase material

锆合金 MAX 相涂层常用 Ti-Si-C、Cr-Al-C、 Zr-Al-C 等系统组成的物质,例如 Ti₃SiC₂、 Ti₃AlC₂、Cr₂AlC 和 Zr₂AlC 等。广泛使用的 Ti₃SiC₂和 Ti₃AlC₂虽然在高温下表现出良好的 抗氧化性,但其耐腐蚀性较差,尤其是在高温环 境中受 Na₂SO₄等硫酸盐腐蚀较严重。因此, 寻找具有高温抗氧化且耐腐蚀的 MAX 相涂层 非常重要。由于 Cr₂O₃和 Al₂O₃在熔融 Na₂SO₄ 中的溶解度较低^[4],Cr-Al-C 体系中的化合物 会表现出良好的抗高温氧化和热腐蚀能力。 Cr₂AlC 是 Cr-Al-C 体系中重要的层状三元碳 化物,近年来受到越来越多的关注^[4]。

MAX 相材料中 Cr₂AlC 涂层具有高弹性刚 度、优异的抗氧化性、良好的耐腐蚀性,可以通 过阴极电弧沉积法、电泳沉积法和磁控溅射法 制备得到并应用于金属基材中。Cr₂AlC 材料的 密度 5.21 g·cm⁻³、杨氏模量 278 GPa、维氏硬度 3.5 GPa。Cr₂AlC 的化学相容性均与锆合金包壳 匹配较好而被用作锆合金包壳的涂层材料, 锆合 金表面包覆 Cr₂AIC 涂层的 TEM 图如图 2 所示。

图 2 锆合金表面包覆 Cr₂AIC 涂层的 TEM 图^[5] Fig.2 The TEM diagram of Cr₂AIC coating on zirconium alloy surface^[5]

两者界面处的薄膜致密,其厚度约为 10 nm,XPS 深度剖面结果显示 Cr₂AlC 涂层与 锆合金基体之间没有形成化学键合,表明它们 之间具有良好的化学相容性,因此涂层的附着 力较好。

2 Cr₂AlC 涂层的高温腐蚀行为

Lin^[4]等人研究了 Cr₂AlC 的抗氧化性能和 抗热腐蚀性能。在 800℃氧化气氛下试验时, Cr₂AlC 材料开始氧化,这比常规的二元过渡金 属碳化物和氮化物开始氧化的温度要高很多。 这是由于 Cr₂AlC 的成键特性和晶体结构使得 Al 发生了选择性氧化,在 Cr₂AlC 表面形成一层 致密的 Al₂O₃ 氧化层^[5],阻碍了氧化的进一步进 行^[6]。同时在 900℃温度条件下热腐蚀 20 h,样 品的质量仅增加 8×10⁻⁴ kg·m⁻²。在 1000℃热 腐蚀 20 h,样品的质量仅增加 1.5×10⁻³ kg·m⁻²。 可见,随温度升高,相同时间下样品的增重略有 增加,但都保持在较小的量级。

2.1 Cr₂AlC 涂层的氧化动力学

Cr₂AlC 在的氧化过程如下:

28Cr₂AlC + 25O₂ ↑ = 14Al₂O₃ + 8Cr₇C₃ + 4CO₂ ↑ (形成连续氧化膜后)

若氧化动力学呈现抛物线关系,则长期氧 化后性能会严重劣化;而呈现立方等其他慢于 抛物线的关系,则抗氧化性能下降缓慢,可较好 地应用于锆合金涂层。

在 1000 ℃ ~1400 ℃ 范围内的 Cr₂AlC 的氧 化动力学与时间呈现非线性关系。图 3 (a) 显 示了 1200 ℃和 1300 ℃下 Cr₂AlC 氧化的功率拟 合结果。图 3 (b) 中实线显示在 700 ℃、800 ℃、 1000 ℃下,依据 Cr₂AlC 氧化的功率拟合结果, 其时间指数值分别为0.24、0.46、0.18。结果 表明,Cr₂AlC 的氧化动力学并非与时间呈抛 物线关系。如图3(b)所示,Cr₂AlC 在1000℃ 下氧化30天后,氧化层厚度为3.5 µm,然而, 在接下来的330天内,氧化物厚度增加了不 到2µm。结果表明上述模型得到的曲线关系 与实际试验测试所得情况仍有差距,这是由于 Cr₂AlC 的氧化动力学无法用简单的模型充分拟 合,实际上初始时氧化物的增加相对较快,随着 时间的推移增长速度放缓,氧化物层几乎停止 变厚。

Fig.3 The fitting results of rate constants at different temperatures ^[5]

2.2 Cr₂AlC 涂层形成的氧化层

Cr₂AlC 在被氧化时会形成致密且连续的保 护性 α-Al₂O₃ 氧化层,Al₂O₃ 氧化层的厚度会 随着温度的升高而增加,并且通过 1000℃高温 环境下 100 次循环氧化实验结果可知,Al₂O₃ 氧 化层热稳定性较好,这是由于 Cr₂AlC 涂层中 Cr 与 Al 之间的结合力较 Cr 与 C 之间的结合力弱, 导致了 Al 的选择性氧化^[4]。此外,在形成的 Al₂O₃ 氧化层和 Cr₂AlC 基体之间还会形成一个 连续的 Cr₇C₃ 中间层(如图 4 所示)。

这是因为在 Cr₂AlC 中,由于金属 Cr-Al 键比共价 Cr-C 键弱,所以 Al 原子比 Cr 更容 易向外扩散到晶体结构中。Cr₇C₃ 亚层的存 在使得 Al₂O₃ 氧化层对 C 的渗透性降低,进而 使得 Cr₂AlC 涂层在高温环境下(如 1200 ℃)

图 4 Cr₂AlC 在不同温度下在空气中氧化 20 h 后的 SEM 及 EDS 谱图^[4]

的抗氧化性能和耐硫酸盐腐蚀性能均优于 Ti₂AlC 和 Ti₃AlC₂ 等其他典型 MAX 相涂层 材料^[4,7]。

图 5(a) 是在 1200℃氧化的 Cr₂AlC 样品横 截面的 SEM 显微照片。外层为含 Cr 的 Al₂O₃, 内层为 Cr₇C₃,在 1100℃下氧化 35 h 的样品清 楚地观察到 Cr₂O₃ 结核, 如图 5(b) 所示。这是 唯一观察到在 Cr₂AlC 样品的氧化过程中,在其 形成的氧化物层下方形成碳化物层的例子。此 外,在 1100℃更长时间的氧化后未观察到 Cr₃C₂ 相^[4],可能是因为它氧化分解形成了 Cr₇C₃、CO、 CO₂。由于 Al 元素耗尽且没有及时供给,在 Cr₇C₃ 层中会形成空洞,这会导致 Cr₂AlC 抗氧 化性能的降低。

Cr₂AlC 涂层在高温氧化下还具有自愈修复的能力^[8],可以使氧化试验前存在的一些微裂纹在高温氧化后消失。这是由于Al的高扩散率,以及形成致密、稳定和黏附的 Al₂O₃ 氧化膜具有很高的相对体积膨胀。鉴于Al元素的有限供应,这种自愈修复仅对亚微米缺陷有效,对较大的裂缝无效。

在 900 ℃ 和 1000 ℃ 下, Cr₂AlC 涂 层 腐 蚀 20 h 后的增重比 Ti₃AlC₂ 和 Ti₂AlC 低两个数量 级以上, 腐蚀过程中 Cr₂O₃ 和 Al₂O₃ 形成了固溶 体, 这使得腐蚀产物除主要的 Al₂O₃ 外, 还存在 大量的 Cr 元素。Cr 与 Al 之间较弱的键合使得 Cr₂AlC 中的 Al 具有较高的活性, 此外 Al 对氧 的亲和力比 Cr 强, 这使得 Cr₂AlC 涂层在高温 氧化和热腐蚀过程中都形成了 Al₂O₃ 氧化层, 氧 化层有效地保护了下面的 Cr₂AlC 基体免受腐 蚀。当 Cr₂AlC 基体受到进一步腐蚀时, 会出现 如图 6 所示的层状腐蚀, 这也是 MAX 相的典型 腐蚀特征。Cr₂AlC 还可以通过纳米级变形进行 分层或扭转, 从而吸收能量并避免大量脆性陶 瓷断裂。

图 6 不同含量 Al₂O₃ 层包覆下的 Cr₂AlC 在 3.5 wt% NaCl 溶液中动电位极化后发生腐蚀的 SEM 图^[9] Fig.6 The SEM diagram of corrosion of Cr₂AlC coated with different content of Al₂O₃ layers after potentiodynamic polarization in 3.5 wt% NaCl solution^[9]

Cr₂AlC 对 Na₂SO₄ 熔融盐表现出非常好的 耐热腐蚀性,这是因为在熔融 Na₂SO₄ 环境中, Cr₂O₃ 比 Al₂O₃ 的碱性溶解程度更高,这个过程 会降低熔盐的碱度,从而在热腐蚀试验后的样 品表面出现如图 7 所示的稳定连续的 Al₂O₃ 氧 化膜。

在熔融 Na₂SO₄ 环境中的热腐蚀反应可表示为:

$$Cr_2O_3 + 2Na_2O + 3/2O_2 \rightarrow 2Na_2CrO_4$$

 $Al_2O_3 + Na_2O \rightarrow 2NaAlO_2$

图 7 Na₂SO₄ 熔融盐包覆的 Cr₂AlC 样品在(a)900℃和 (b)1000℃的热腐蚀测试后的横截面 SEM 图^[4] Fig.7 The Cross sectional SEM images of Cr₂AlC samples coated with Na₂SO₄ molten salt after thermal corrosion testing at (a)900℃ and (b)1000℃^[4]

在熔融 Na₂SO₄ 环境中^[4], Cr₂AlC 涂层耐 I 型热腐蚀, 且几乎不存在 II 型低温热腐蚀, 同时 值得关注的是, 铝合金易发生点腐蚀, 而 Cr₂AlC 涂层在腐蚀过程中很少出现点腐蚀、水垢溶解 和硫化物形成等情况, 这是由于涂层中较高含 量的铬的氧化物有效防止了熔融盐的 SO₄²⁻、Cl⁻ 等阴离子破坏 Al₂O₃ 钝化膜。

Cr₂AIC 涂层的高压釜试验表明,由于 Cr 元 素的高浓度使得 Cr₂AIC 涂层在水热腐蚀条件 下形成钝化 Cr₂O₃,因保护性 Al₂O₃ 的产生而带 来的优异抗氧化性和因钝化 Cr₂O₃ 的产生而带 来的耐水热腐蚀意味着其在耐事故燃料锆合金 涂层的应用中有巨大潜力。

3 Cr₂AlC 涂层失效机制

在高温水蒸气环境下, Cr_2AlC 涂层中 Al 元 素被耗尽而使得涂层的保护作用开始失效, 当 Al 元素被完全消耗后, 氧化物以楔形的形式生 长到涂层 – 基材界面中, 在涂层中间形成具有 较差保护性的 Cr_2O_3 。 Tang^[10]等人的研究表明, 在 1000℃的高温水蒸气中氧化 1 h 仅检测到了 Al₂O₃ 的形成,并未检测到 Cr_2O_3 的形成,可能是 因为 Cr_2O_3 转化成了挥发性的氢氧化物、碳氧化 物逸出, 其可在高温下以更高的速率蒸发。气 态碳氧化物的逸出使得 Cr_7C_3 的空隙密度增加, 这会加重涂层的失效程度, 最后氧化过程会使 得氧化层内侧的锆合金持续氧化, 直到合金完 全氧化失效, 在 1325℃时保护作用的丧失归因 于薄涂层的完全氧化, 完全失效后 Cr_2AlC 层的 厚度减少到原来的 75%。Al 元素被耗尽的原因 可能是由 Al 元素向锆合金基体内部扩散或涂 层外部扩散所造成的。Cr₂AlC 相中的 Al 元素 的高活性会引起 Al 元素在涂层和基体材料之 间发生相互扩散,并在靠近涂层和基体界面形 成含 Al 扩散层。此外,与 1000℃相比,本文发 现 Cr₂AlC 涂层在 1200℃下被氧化的过程中,Al 的向内扩散被大大抑制,碳的向内扩散开始成 为主导过程。

如图 8 所示, Tang^[10]等人的研究表明, 两种不同类型的 Cr₂AlC 涂层的锆合金分别在 1260℃和 1325℃左右开始释放氢气,逐渐失效。 通过氢气释放行为与涂层横截面结构相结合分 析表明, Cr₂AlC 涂层在 1260℃发生宏观上的脆 性断裂, 断裂可能与氧化过程引起的涂层与锆 合金基体之间的应力增加及热膨胀系数不匹配 有关。Cr₂AlC 热膨胀系数 1.33×10⁻⁵ K 与锆合 金基体材料的热膨胀系数 7.2×10⁻⁶ K 有一定的 差异, 不利于涂层质量控制, 当涂层与锆合金基 底材料热膨胀系数相近时, 可减弱退火中受到 热应力的影响而导致涂层开裂的风险。

Cr₂AlC 涂层具有明显的柱状显微组织,柱 状边界中存在作为快速扩散路径的开放空隙, 这会加速涂层保护性能的失效。在制备过程中, 非晶中间层可能会在热处理过程中结晶,这可 能会引入内应力并导致涂层开裂,现有工艺也 难免会使得涂层结构中存在细微裂痕和凹陷, 这会使得在氧化和腐蚀过程中产生疲劳裂纹和 应力损伤,进而使涂层表面开裂性能严重下降。

因此,热膨胀系数匹配性差异引起的热应 力和非晶中间层结晶引入的内应力对 Cr₂AlC 涂层在氧化过程中的开裂失效都起到了重要 作用。

4 结语

Cr₂AIC 涂层是耐事故燃料锆合金涂层中具 有潜在应用前景的一种涂层材料,通过对涂层 表面改性,可以增强涂层的抗氧化和防腐蚀性 能。一种途径是在 Cr₂AIC 涂层中引入中间层, 例如 AI/C-Mo,Mo 元素还能够阻挡退火过程 中涂层与基底之间的元素相互扩散,能够有效 缓解涂层制备过程中退火时的应力,从而可有 效提高涂层与锆合金基底材料的结合力。另一 种途径是在 Cr₂AIC 涂层表面添加金属层,例如 Cr 金属覆盖后的 Cr/Cr₂AIC 涂层具有更高的延 展性和断裂韧性^[10]。除对涂层改进外,仍需对 Cr₂AIC 涂层等 MAX 相涂层材料的结构性能等 各方面进行研究和优化,探索更适合、更匹配的 工程应用方式,使其发挥应用潜力。

参考文献

[1] Kim H G, Yang J H, W.J. Kim E A. Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea [J]. Nuclear Engineering and Technology, 2016, 48 (1): 1-15.

- [2] Ian, Younker, Massimiliano, et al. Neutronic evaluation of coating and cladding materials for accident tolerant fuels [J].
 Progress in Nuclear Energy, 2016.
- [3] Sun, M Z. Progress in research and development on MAX phases: a family of layered ternary compounds [J]. International Materials Reviews, 2011, 56 (3): 143–166.
- [4] Lin Z J, Li M S, Wang J Y, et al. High-temperature oxidation and hot corrosion of Cr2AlC [J]. Acta Materialia, 2007, 55 (18): 6182-91.
- [5] Zhang J, Tian Z, Zhang H, et al. On the chemical compatibility between Zr-4 substrate and well-bonded Cr2AlC coating [J]. Journal of Materials Science & Technology, 2019, 35(1): 1-5.
- [6] Wang X H, Zhou Y C. Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process [J]. Acta Materialia, 2002, 50 (12): 3143-51.
- [7] Tallman D J, Anasori B, Barsoum M W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air [J]. Research Letters in Materials Science, 2013, 1 (3): 1–11.
- [8] Ougier M, Michau A, Lomello F, et al. High-temperature oxidation behavior of HiPIMS as-deposited Cr-Al-C and annealed Cr2AlC coatings on Zr-based alloy [J]. Journal of Nuclear Materials, 2019: 151855.
- [9] Zhang Z, Qian Y, Xu J, et al. Corrosion behaviors of Cr2AlC/ α-Al2O3 composites in 3.5 wt. % NaCl aqueous solution [J]. Ceramics International, 2020, 46 (8).
- [10] Tang C, Groe M, Ulrich S, et al. High-temperature oxidation and hydrothermal corrosion of textured Cr2AlC-based coatings on zirconium alloy fuel cladding [J]. Surface and Coatings Technology, 2021: 419.

Recent Progress of Cr₂AlC Coating of Max Phase Material for Accident-tolerant Fuel Zirconium Alloy Cladding

Qin Ziming¹, Ji Chenlong¹, Yin Hongbu^{2,*}

(1. Naval Equipment Department of PLA, Beijing 100841, China; 2. Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610041, China)

Abstract: Max phase material is a kind of carbon / nitride of ternary layered structure cermet like materials, which has excellent properties of metals and ceramics. Max phase Cr_2AlC material has the potential to be used in accident tolerant fuel zirconium alloy cladding due to its excellent oxidation resistance, corrosion resistance, oxidation resistance and radiation resistance. This article reviews the recent research progresses in this field and summarizes the oxidation behavior, corrosion behavior, progress of failure mechanism and improvement direction. The survey of the current literatures could contribute to concerning on the advantages and disadvantages of Cr_2AlC coating material and provide references for further engineering applications in aerospace, chemical and nuclear industries.

Key words: Max phase material; Cr₂AlC; accident tolerant fuel; review

(责任编辑:徐晓娟)

核安全

第 23 卷第 1 期

2024年2月

NUCLEAR SAFETY

黄俊,应秉斌,巢孟科,等. 立式 U 形管自然循环蒸汽发生器循环倍率近似计算方法研究[J]. 核安全,2024,23(1):95-102. Huang Jun,Ying Bingbin,Chao Mengke, et al. Study on Approximate Calculation Method of Circulation Ratio for Vertical U-tube Natural Circulation Steam Generator [J]. Nuclear Safety,2024,23(1):95-102.

立式U形管自然循环蒸汽发生器循环倍率近似计算方法研究

黄 俊*,应秉斌,巢孟科,李经怀

(上海核工程研究设计院股份有限公司,上海 200233)

摘要:循环倍率是保证核电厂立式U形管自然循环蒸汽发生器稳定运行的重要参数。为 了近似方便地计算该值,本文在归纳、整理公开出版物中关于蒸汽发生器自然循环相关计 算公式的基础上,以典型结构的立式U形管自然循环蒸汽发生器为例,提出一套简单完 整的蒸汽发生器循环倍率近似计算方法。在已知蒸汽发生器部分结构参数与少量热工参数 的基础上,可按步骤方便地对蒸汽发生器驱动压头与流动阻力进行近似计算,并求解出循 环倍率。计算选取的公式均来自公开出版物,仅需水物性表即可完成计算。采用该近似方 法的循环倍率求解结果与采用专业蒸汽发生器热工计算程序的循环倍率求解结果相比误差 较小。

关键词: 蒸汽发生器; 循环倍率; 近似计算

中图分类号: TK222 文章标志码: A 文章编号: 1672-5360 (2024) 01-0095-08

1 引言

立式U形管自然循环蒸汽发生器是广泛应 用于压水堆核电厂的关键设备,在其设计计算 中,循环倍率的确定十分重要。循环倍率定义 为蒸汽发生器内部自然循环流量与蒸汽流量之 比。其基本原理在于蒸汽发生器内部自然循环 所产生的驱动压力,等于其总流动压力降。循 环倍率作为蒸汽发生器的重要设计参数,对传 热管腐蚀、流动稳定性、传热效果和汽水分离性 能都有重要影响。循环倍率的影响因素主要有 以下4方面。

(1) 传热方面:循环倍率过低将导致管束出 口含气率过高,空泡含量增多,从而导致传热效 果下降。为了避免局部传热恶化,通常需要限 制管束出口的蒸汽含量。

(2)流动稳定性方面:循环倍率过低可能会 引起流动不稳定,甚至引起流动振荡,这种现象 将导致传热能力降低,甚至可能引起水和蒸汽 流量的大幅波动。实践表明,只要保持管束区 域的含汽量较低,流动即可得到稳定。

(3) 传热管材腐蚀方面: 传热管的腐蚀与流 动状态密切相关, 在一些局部滞留和低流速的 区域, 会产生污垢沉积。因而从防腐蚀的角度 来看, 应适当提高循环倍率, 以提高冲刷流速、 降低含气量。

(4)汽水分离方面:如果循环倍率过高,可能 会导致汽水分离器的过载,当其分离负荷超过

研究与探讨

收稿日期: 2023-05-10 修回日期: 2023-05-29

作者简介:黄俊(1985一),男,工程师,硕士学位,现主要从事蒸汽发生器设计工作

^{*} 通讯作者: 黄俊, E-mail: huangjun@snerdi.com.cn

能力极限时,水滴可能会随蒸汽进入汽轮机的 高压缸,这不仅会降低汽轮机的效率,还会直接 威胁其安全。因此,在考虑各种因素的前提下, 通常将蒸汽发生器的循环倍率选取在 3~4 附近, 以保证其稳定运行。

2 计算模型

蒸汽发生器循环倍率的计算主要涉及确定 二次侧循环回路的驱动压力和流动阻力。假定 有一台典型结构的U形管自然循环蒸汽发生 器,已完成了初步的结构设计、分离器布置选型 与传热计算。计算所需的结构参数为已知(如 图1所示),且蒸汽发生器的传热量、给水温度 及二次侧饱和压力也为已知。蒸汽发生器的传 热功率与给水温度是由核电厂的系统设计确定 的,蒸汽发生器二次侧的饱和压力与温度是由 蒸汽发生器传热计算确定的。假设待求的循环 倍率为*K*,其余计算所需的结构及热工参数见表 1与图1。

	8
参数	符号
传热功率	Q
传热面积	A
下降段水位高度	H_{o}
U形管束顶部高度	H_2
汽水分离器出口高度	H_3
下降段高度	H_{dc}
套筒缺口高度	H_p
管束直段高度	H_s
下降段内径	D_i
下降段外径	D_o
管束直段区套筒内径	D_{s}
二次侧饱和压力	P_{s}
给水温度	$T_{ m fw}$
传热管外径	$d_{ m t}$
传热管数量	N_{t}
传热管节距	t

	表1	蒸汽发生器已知参数
Table 1	Knov	wn steam generator parameters

	续表
参数	符号
管束布管圆直径	d_{b}
支承板总数	$N_{ m tsp}$
第i块支承板高度	$L_{ m i}$
第i块支承板流通面积	F_{i}
汽水分离器数量	$N_{ m sp}$
单个分离器流通面积	$F_{ m sp}$
重力加速度	g

Fig.1 Schematic of steam generator

3 驱动压头计算

在循环回路中,下降段中单相水流动,而上 升通道中流动的是汽水混合物。一般蒸汽发生 器中下降段水位与上升通道分离器出口的高度 大致相同,而在相同的系统压力下,单相水的密 度大于汽水混合物的密度,二者之差构成了循 环回路中的驱动压力。这个驱动压力驱动着水 沿着下降段流动,而汽水混合物则沿着上升通 道流动,从而建立了自然循环。

计算驱动压力需要计算循环回路中各区段的压降。在加热通道,特别是两相流系统中,汽水混合物的密度是连续变化的。在近似计算中,可将整个循环回路分成4段(如图2所示):下降段、预热段、沸腾段和上升段,并将每一小段中的密度近似看作常数,然后计算各段的提升压降。

图 2 循环回路分段 Fig.2 Section of recirculating loop

3.1 下降段提升压降

给水与下降段水的系统压力近似等于二次 测饱和压力,即

$$P_{\rm fw} = P_{\rm dc} = P_{\rm s} \tag{1}$$

由 P_s 通过水物性表可求出饱和水比焓 h₁。

由 P_{fw} 、 T_{fw} 通过水物性表可求出给水比焓 h_{fw} 。根据热平衡,下降段水比焓:

$$h_{\rm dc} = \frac{h_{\rm fw} + (K - 1)h_l}{K}$$
(2)

由 P_{dc}、h_{dc} 通过水物性表可求得下降段水温 度 T_{dc}。由 P_{dc}、T_{dc} 通过水物性表可求得下降段 水密度 P_{dc}。则下降段水的提升压降为:

$$\Delta P_0 = \rho_{dc} g \cdot H_0 \tag{3}$$

3.2 预热段提升压降

二次侧平均热流密度
$$q=Q/A$$
。 (4)

根据热平衡,给水(蒸汽)质量流量为:

$$W = Q/(h_{\rm g} - h_{\rm fw}) \tag{5}$$

根据热平衡,管束预热段换热量:

$$Q_{\rm sc} = W(h_{\rm l} - h_{\rm fw}) \tag{6}$$

管束预热段换热面积:

$$A_{sc} = Q_{sc}/q \tag{7}$$

根据几何关系,管束预热段高度:

$$H_1 = A_{sc} / (2\pi \cdot d_t \cdot N_t) \tag{8}$$

通常下降段水过冷度不大,其密度与饱和 水的密度相近,近似计算中,预热段水平均密度 取两者算数平均值:

$$\rho_{\rm sc} = (\rho_{\rm dc} + \rho_1)/2 \tag{9}$$

预热段提升压降 $\Delta P_1 = \rho_{sc}g \cdot H_1$ (10)

3.3 上升段提升压降

二次侧循环总质量流量:

$$G = WK \tag{11}$$

管束沸腾区出口处汽水混合物体积含 汽率:

$$\beta = \frac{\rho_1}{\rho_1 + \rho_g(K - 1)}$$
(12)

管束沸腾区出口处液体傅立叶数为:

$$F_o = \frac{G^2}{gd_i\rho_1^2} \tag{13}$$

选用奥斯马奇金公式计算管束沸腾区出口 处滑速比:

$$S = 1 + \frac{0.6 + 1.5\beta^2}{F_o^{0.25}} (1 - \frac{P_s}{P_{\rm cr}}) \qquad (14)$$

(常数 *P*_{cr}=22.115 Mpa,为水的临界压力) 该式的适用范围是 *S*<3,*P*s≤12 MPa。 管束沸腾区出口处截面含汽率(空泡份额):

$$\alpha = \frac{1}{1 + S \cdot \left(\frac{1}{\beta} - 1\right)} \tag{15}$$

管束沸腾区出口处混合物真实密度为:

$$\rho_{\rm out} = \rho_1 \cdot (1 - \alpha) + \rho_{\rm g} \cdot \alpha \qquad (16)$$

根据几何关系,上升段的高度差为 H₃-H₂。则上升段提升压降为:

$$\Delta P_3 = \rho_{\text{out}} g \cdot (H_3 - H_2) \tag{17}$$

3.4 沸腾段提升压降

近似计算中,沸腾段汽水混合物密度取对 数平均值为:

$$\rho_{\rm b} = \frac{\ln \left(\frac{\rho_l}{\rho_{\rm out}}\right)}{\frac{1}{\rho_{\rm out}} - \frac{1}{\rho_{\rm 1}}} \tag{18}$$

根据几何关系,沸腾段的高度差为 H₂-H₁。则沸腾段提升压降为:

$$\Delta P_2 = \rho_{\rm b}g \cdot (H_2 - H_1) \tag{19}$$

3.5 回路驱动压头

回路总的驱动压头为:

$$\Delta P_{\rm d} = \Delta P_0 - (\Delta P_1 + \Delta P_2 + \Delta P_3) \quad (20)$$

按以上步骤计算所得驱动压头 ΔP_d 的表达 式中仅包含 K 一个未知量。

4 流动阻力计算

在近似计算中,蒸汽发生器二次侧循环回路流动阻力主要考虑6个部分:下降段摩擦阻力、下降段局部阻力、管束直段区摩擦阻力、管束支承板阻力、管束弯管区阻力和汽水分离器阻力。一些专门定义的系数(乘子)乘以相对应的单相流动阻力可获得两相流的阻力。

4.1 下降段摩擦阻力

根据几何关系,下降段流通面积为:

$$F_{\rm dc} = \frac{\pi}{4} \cdot (D_{\rm o}^2 - D_{\rm i}^2)$$
 (21)

下降段流速为:

$$v_{\rm dc} = \frac{G}{\rho_{\rm dc} \cdot F_{\rm dc}} \tag{22}$$

根据几何关系,下降段水力直径为:

$$D_{\rm dc} = D_{\rm o} - D_{\rm i} \tag{23}$$

一般蒸汽发生器内的雷诺数较大,选用阻 力平方区的摩擦阻力公式:

$$\lambda_{\rm dc} = \frac{1}{\left[1.74 + 2\log\left(\frac{D_{\rm dc}}{2\Delta}\right)\right]^2}$$
(24)

其中 Δ 为壁面绝对粗糙度,按情况取值,范 围为 0.01~0.1 mm

则下降段摩擦阻力为:

$$\Delta p_{dc,l} = \frac{\lambda_{dc} - H_{dc}}{2D_{dc}} \cdot \rho_{dc} v_{dc}^2$$
(25)

4.2 下降段局部阻力

根据几何关系,下降段进入套筒缺口面 积为:

$$F_{op} = \pi D_i H_p \tag{26}$$

下降段水进入管束区,其凸扩局部阻力系 数为:

$$\xi_{op} = \left(1 - \frac{F_{dc}}{F_{op}}\right)^2 \tag{27}$$

下降段水进入管束区后方向改变了180°,可取局部阻力系数:

$$\xi_{180} = 1.5$$
 (28)

若下降段中还有其他障碍物或形阻,则可 根据其结构特点查找经验公式或采用 CFD 分 析法确定其阻力系数 ξ_{ex}。假如能定性判断该阻 力很小,在近似计算中可忽略不计。

下降段总的局部阻力系数为:

$$\xi_{dc} = \xi_{op} + \xi_{180} + \xi_{ex}$$
(29)

下降段局部阻力为:

$$\Delta p_{dc,m} = \frac{\varsigma_{dc}}{2} \cdot \rho_{dc} v_{dc}^{2} \qquad (30)$$

4.3 管束直段区摩擦阻力

根据几何关系,管束直段部分换热面积为:

$$A_s = 2N_t \pi d_t H_s \tag{31}$$

根据几何关系,管束直段区纵向流通面 积为:

$$F_{s} = \frac{\pi}{4} \cdot (D_{s}^{2} - 2N_{t}d_{t}^{2})$$
(32)

根据热平衡,在直段高度 *H*_s 处汽液混合物 的比焓为:

$$h_{\rm s} = (Gh_{dc} + A_s q)/G \tag{33}$$

直段高度 H。处汽液混合物质量含汽率:

$$x_s = (h_s - h_l)/(h_g - h_l)$$
 (34)

管束直段区全液相流速:

$$v_s = \frac{G}{\rho_l \cdot F_s} \tag{35}$$

根据几何关系,管束直段区水力直径为:

$$D_{\rm e} = (D_{\rm s}^2 - 2N_{\rm t}d_{\rm t}^2) / (D_{\rm s} + 2N_{\rm t}d_{\rm t})$$
(36)

一般蒸汽发生器内的雷诺数较大,选用阻 力平方区的摩擦阻力公式:

$$\lambda_s = \frac{1}{\left[1.74 + 2\log\left(\frac{D_e}{2\Delta}\right)\right]^2}$$
(37)

其中 Δ 为壁面绝对粗糙度,按情况取值,范 围为 $0.01\sim0.1$ mm。

管束直段区全液相流动阻力为:

$$\Delta p_{s,lo} = \frac{\lambda_s \cdot H_s}{2D_e} \cdot \rho_l {v_s}^2 \tag{38}$$

假定汽液混合物均匀受热,选用 M-N 关系 式的平均两相摩擦乘子,直段平均两相摩擦乘 子为:

$$\Phi_s = 1 + 1.3 x_s \left[\left(\frac{\rho_l}{\rho_g} \right)^{0.85} - 1 \right]$$
(39)

上式适用范围为:*P*s>0.68 Mpa,*x*_s<0.5。 管束直段两相摩擦阻力为:

$$\Delta p_s = \Delta p_{s,lo} \cdot \Phi_s \tag{40}$$

4.4 管束支承板阻力

蒸汽发生器有 N_{tsp} 块管束支承板,从下到上 对其编号:1,2, …,N_{tsp}。支承板阻力的计算方 法是:分别计算每块支承板的局部阻力,并将其 加总。若蒸汽发生器还带有均流板,可采用与 支承板相同的方法计算阻力。

根据几何关系,第i块支承板以下换热面积为:

$$A_{\rm i} = 2N_{\rm t}\pi d_{\rm t}L_{\rm i} \tag{41}$$

第i块支承板处汽液混合物质量含汽率为:

$$x_i = (h_i - h_1)/(h_g - h_1)$$
 (43)

第i块支承板处流通面积收缩率为:

$$m_{\rm i} = F_{\rm i}/F_{\rm s} \tag{44}$$

近似计算中,选取均匀孔板的经验关系 式计算支承板阻力系数,第i块支承板阻力系 数为:

$$\xi_i = (0.707 \cdot \sqrt{1 - m_i} + 1 - m_i)^2 / m_i^2 \quad (45)$$

第i块支承板处全液相阻力为:

$$\Delta p_{i,l} = \frac{1}{2} \xi_i \rho_l {v_s}^2$$
 (46)

第i块支承板处的均相流两相乘子为:

$$\Phi_i = 1 + x_i \left(\frac{\rho_l}{\rho_g} - 1\right) \tag{47}$$

第i块支承板处两相流动阻力为:

$$\Delta p_i = \Delta p_{i,l} \cdot \Phi_i \tag{48}$$

按以上计算时应先判断支承板高度 L_i 是否 高于预热段高度 H_i,若否,则表明该支承板处为 单相流,不必计算两相乘子,仅计算全液相阻力 即可。

总的管束支承板压降为:

$$\Delta p_{tsp} = \sum_{i=1}^{N_{tsp}} \Delta p_i \tag{49}$$

4.5 管束弯管区阻力

管束弯头区出口处质量含汽率:

$$x_{\rm out} = l/K \tag{50}$$

管束弯头区平均质量含汽率:

$$x_b = \frac{x_s + x_{out}}{2} \tag{51}$$

管束弯管区名义流通面积:

$$F_{\rm b} = \frac{\pi}{4} D_{\rm s}^2 \tag{52}$$

管束弯管区名义全液相流速:

$$v_b = \frac{G}{\rho_l \cdot F_b} \tag{53}$$

弯管区饱和水雷诺数为:

$$Re_b = \frac{\rho_l \cdot v_b \cdot d_l}{\mu_l} \tag{54}$$

管束相对节距为:

$$x = t/d_t \tag{55}$$

若管束为正方形排列(如图 3 所示),横向冲 刷管束阻力系数为:

$$\xi_{b} = 4 \left[0.\ 044 + \frac{0.\ 08x}{(x-1)^{0.\ 43+1.\ 13/x}} \right] Re_{b}^{-0.\ 15}$$
(56)

若管束为正三角形排列(如图 3 所示),横向 冲刷管束阻力系数为:

$$\xi_{b} = 4 \left[0.23 + \frac{0.11}{(x-1)^{1.08}} \right] Re_{b}^{-0.15} \quad (57)$$

管束弯管区重心至圆心之间距离为:

$$y_{\rm b} = 0.2122d_{\rm b}$$
 (58)

管束弯管区受冲刷传热管排数为:

$$N_{\rm b} = y_{\rm b}/t - 1$$
 (59)

管束弯管区全液相阻力为:

$$\Delta p_{b,l} = \frac{1}{2} N_b \xi_b \rho_l v_b^2 \tag{60}$$

管束弯管区均相流两相乘子为:

$$\Phi_b = 1 + x_b \left(\frac{\rho_l}{\rho_g} - 1\right) \tag{61}$$

管束弯管区两相流动阻力为:

$$\Delta p_b = \Delta p_{b,l} \cdot \Phi_b \tag{62}$$

4.6 汽水分离器阻力

汽水分离器是循环回路的重要组成部分, 汽水混合物流过时产生的阻力在上升通道阻 力中占有较大比例。然而汽水分离器结构复 杂,其阻力系数没有经验公式,一般需要进行 试验测定,或者借助 CFD 分析法确定。在此 假定已通过试验或分析法获得分离器的阻力 系数 K_{sp}。

图 3 管子排布 Fig.3 Tube arrangement

单个汽水分离器全液相流速为:

$$v_{sp} = \frac{G}{F_{sp} \cdot \rho_l \cdot N_{sp}} \tag{63}$$

汽水分离器全液相阻力为:

$$\Delta p_{sp,l} = \frac{1}{2} \rho_l K_{sp} v_{sp}^{\ 2} \tag{64}$$

汽水分离器均相流两相乘子为:

$$\Phi_{sp} = 1 + x_{out} \left(\frac{\rho_l}{\rho_g} - 1 \right) \tag{65}$$

汽水分离器两相阻力为:

$$\Delta p_{sp} = \Delta p_{sp,l} \cdot \boldsymbol{\Phi}_{sp} \tag{66}$$

4.7 回路流动总阻力

循环回路的流动总阻力:

5 循环倍率的求解与验证

自然循环保持稳定的条件是驱动压力等于 流动阻力。因此有:

$$\Delta p_d = \Delta p_r \tag{68}$$

此时,方程两边的驱动压力和流动阻力都 只含有 *K* 一个未知量,理论上求解此方程即可 得到蒸汽发生器的循环倍率。由于流动阻力总 是随着循环倍率增大而增大,而驱动压头则随 着循环倍率增大而减小,利用此特性,可采用迭 代法求解,即首先假设一个循环倍率值,然后分 别计算驱动压力和流动阻力。一般情况下,由 驱动压力和流动阻力计算出来的驱动压头和流 动压降并不相等,因此需要重新调整假设的循 环倍率 *K* 值,使驱动压力等于流动阻力。这是 一个迭代的过程,重复进行,直到在一定精度(建 议计算中将驱动压头与流动阻力的差值迭代至 相对误差 0.1% 以内)下驱动压力等于流动阻力, 此时对应的循环倍率即为所需的值。

为验证本文所述的计算方法,将计算结果与 专业的 THETA 蒸汽发生器热工水力分析软件 进行了对比。THETA 是由上海核工程研究设计 院自主开发的立式 U 形管自然循环蒸汽发生器 一维稳态热工水力计算分析程序,并具有完整的 知识产权。本文将该程序与国外的计算程序进 行了对比,以验证其计算结果的准确性。对比结 果表明,采用本文所述的近似计算方法得到的循 环倍率与专业软件的计算结果非常接近。

6 小结

本文建立了一套完整的立式U形管自然循 环蒸汽发生器循环倍率的近似计算方法。所用 计算公式除了可根据几何关系及热平衡关系建 立,其余均来自出版的参考文献。相关公式的 引用文献出处见表 2。

表 2 公式引用文献 Table 2 Coloulating formula references

	Calculating for mula references	
本文公式号	引用文献	文献内公式号
9	[1]	3.46
12	[2]	1–12
13	[2]	4-2
14	[2]	4-2
15	[3]	5-72

		续表
本文公式号	引用文献	文献内公式号
16	[2]	1–42
18	[1]	3.48
24	[3]	5-5
27	[3]	5-7
34	[2]	1-4
37	[3]	5-5
39	[2]	5-67
43	[2]	1-4
45	[4]	图表 8-1
47	[3]	5-57
50	[2]	1–36a
55	[3]	5-12
56	[3]	5-9
57	[3]	5-10
58	[3]	5-110
59	[3]	5-109
61	[3]	5-57
65	[3]	5-57

7 案例计算

本文选取秦山核电一期工程蒸汽发生器作为 计算案例,分别采用 THETA 程序与本文建立的算 法计算蒸汽发生器的循环倍率。计算结果见表 3。

表 3 秦山 1 期蒸汽发生器计算结果 Table 3 Calculating result of Qinshan phase i steam generator

Senerator			
	程序结果	本文算法	
下降段提升压降 /kPa	77.6	77.5	
预热段提升压降 /kPa	8.1	8.1	
沸腾段提升压降 /kPa	22.1	21.5	
上升段提升压降 /kPa	2.9	2.9	
驱动压头 /kPa	44.5	45.0	
下降段摩擦阻力 /kPa	3	3.3	
下降段局部阻力 /kPa	12.8	13.4	
直段区摩擦阻力 /kPa	0.68	0.66	
弯管区阻力 /kPa	0.89	0.73	
汽水分离器阻力 /kPa	18.2	18.1	
支承板压降 /kPa	8.89	8.78	
总流动阻力 /kPa	44.5	45.0	
循环倍率	3.83	3.82	

分别计算蒸汽发生器在不同功率水平 (100%,70%,30%)下的循环倍率,两者结果对比 如图4所示。

对比以上两种计算方法的结果,证明本文 建立的近似计算方法结果较可靠。

8 结论

(1)本文建立的近似计算方法相对简单,若 已知蒸汽发生器部分结构与热工参数,则无须 借助专用程序,即可按步骤求解循环倍率;

(2)本文通过对比近似计算与专业热工程序的结果,证明近似计算方法的结果比较可靠。

参考文献

- [1] 臧希年.核电厂系统及设备[M].北京:清华大学出版社, 2010:79-82.
- [2] 阎昌琪. 汽液两相流 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2009: 1-8, 40-80.
- [3]孙中宁.核动力设备[M].哈尔滨:哈尔滨工程大学出版社, 2003:55-76.
- [4]华绍普.实用流体阻力手册[M].北京:国防工业出版社, 1985:359-371.

Study on Approximate Calculation Method of Circulation Ratio for Vertical U–tube Natural Circulation Steam Generator

Huang Jun^{*}, Ying Bingbin, Chao Mengke, Li Jinghuai

(Shanghai Nuclear Engineering Research and Design Institute Co., Ltd, Shanghai 200233, China)

Abstract: In order to calculate circulation ratio approximately and conveniently, which is a key parameter for stable operation of vertical U-tube natural circulation steam generator in nuclear power plant, a simple and complete approximate calculation method is proposed. The calculation method is developed by summarizing the calculation formulas related to the natural circulation of the steam generator in the public publications. Taking a vertical U-tube natural circulation steam generator with typical structure for example, given some structural parameters and a few thermal parameters of the steam generator, the circulation driving head and the circulation loop pressure drop of the steam generator can be calculated approximately step by step, and then the circulation can be solved. The formulas adopted for the calculation are from public publications, and the calculation can be completed with the help of water property table. The error of the calculation result of the circulation ratio by this approximate method is relatively small compared with that given by professional steam generator thermal calculation program.

Key words: steam generator; circulation ratio; approximate calculation

(责任编辑:徐晓娟)

《核安全》近年可被引文献目录

为更好地服务作者与读者,便于广大科研工作者查阅、引用《核安全》近年文章,减少作者在编写 参考文献时的工作量,本刊编辑部对近年刊发在《核安全》的论文进行了整理,参考国标 GB/T7714-2015,给出了各篇文章的参考文献标准格式。各位作者在撰写论文、引用文献时,可直接参考此目录。

2017年第一期

- [1] 江光,崔毅,徐俊龙.理性竞争,坚守核安全设备价格底线[J].核安全,2017,16(1):1-4.
- [2]李国光,李明龙,韩丽英. 浅谈如何加强核安全监督员发现问题的能力 [J]. 核安全, 2017, 16 (1): 5-7+14.
- [3] 刘芳茗. 安全壳及其内部结构安全的可靠性分析方法研究 [J]. 核安全, 2017, 16(1): 8-14.
- [4] 凌礼恭,路燕,房永刚,等.加强紧固件质量管理的要素分析与建议[J].核安全,2017,16(1):15-20.
- [5]张芳娣,顾杰兵. 铀浓缩厂物料容器辐射水平调查研究 [J]. 核安全, 2017, 16(1): 21-25.
- [6] 吴彦农, 王娅琦, 候秦脉, 等. 海洋异物堵塞核电厂取水系 统事件的经验反馈 [J]. 核安全, 2017, 16(1): 26-32.
- [7]李小华,杨钧翔,陈远登,等. 2004—2009年俄罗斯西北部 放射性同位素热电发生器退役的风险和环境影响评价[J].
 核安全,2017,16(1):33-47.
- [8] 董晓璐,丁超,刘鹏,等.核电人员可靠性分析方法综述和 发展趋势[J].核安全,2017,16(1):48-55.
- [9] 孙树海,赵力,郑丽馨,等.核电厂异常重要性判定(SDP) 方法及其应用[J].核安全,2017,16(1):56-62+69.
- [10] 李海龙,徐宇,董晓璐,等.基于抗震鉴定试验的开关柜的 抗震裕度分析 [J].核安全,2017,16(1):63-69.
- [11]李勇, 吕科锋, 陈刘利, 等. 铅基研究堆燃料组件阻力
 特性模拟实验与分析 [J]. 核安全, 2017, 16 (1): 70-74+81.
- [12] 孔静,张奇,应亮,等. 压水堆核电厂应对全厂断电的电源
 设计[J]. 核安全, 2017, 16(1): 75-81.
- [13]肖增光,孙雪霆,陈林林,等.安全壳内气溶胶沉积试验的浓度测点设计[J].核安全,2017,16(1):82-85+94.
- [14] 尹训强,袁文志,王桂萱.基于DSEM的核电厂结构 土-结构相互作用模型[J].核安全,2017,16(1): 86-94.

2017 年第二期

- [1] 沈钢,孟岳,温玉姣,等.国际合作为核安全"十三五" 规划实施做好支撑和服务[J].核安全,2017,16(2):
 1-4.
- [2]田欣鹭,温爽, 郭超,等. IVR 条件下外部冷却流道变形的 影响因素研究 [J]. 核安全, 2017, 16 (2): 5-10.
- [3]张盼,李聪新,温丽晶,等. 压力容器外部冷却系统流道
 结构和流动参数对流场的影响分析 [J]. 核安全,2017,16
 (2):11-16.
- [4] 江斌, 甄洪栋, 孟阿军, 等. 一种基于概率论的破前漏分析 方法介绍 [J]. 核安全, 2017, 16 (2): 17-23+49.
- [5]石兴伟,兰兵,胡健,等.事故工况下壁面油污和锈斑对钢制安全壳潜在失效影响分析 [J].核安全,2017,16(2): 24-28.
- [6]杨英豪,肖军,朱桂学,等.田湾核电厂3、4号机组风险指引型防水淹设计改进措施研究[J].核安全,2017,16(2):29-34.
- [7] 焦峰,赵丹妮,褚倩倩,等.核电厂薄壁大直径贮水容器负 压变形事件经验反馈 [J].核安全,2017,16(2):35-41.
- [8] 谌登华,姜宏,张翔宇,等.英国通用设计审查(GDA)初 探[J]. 核安全,2017,16(2):42-49.
- [9]杨丽丽,宋大虎,张巧娥,等.核电厂数字化仪控系统信息 安全监管要求探讨[J].核安全,2017,16(2):50-55.
- [10] 刘宇生, 许超, 谭思超, 等. 矩形通道内脉动湍流流动特性 实验研究[J]. 核安全, 2017, 16 (2): 56-62.
- [11]魏超,李铁萍,温爽,等. 堆芯下支承板应力评定等效模型的适用性研究[J]. 核安全,2017,16(2):63-68.
- [12]赵传奇,胡文超,刘健,等.基于三维输运方法的压水堆
 主冷却剂~(16)N源项计算分析[J].核安全,2017,16
 (2):69-73+79.
- [13] 徐小照,潘保林. 基于 BP 神经网络的核电厂核安全文化评 级模型研究 [J]. 核安全, 2017, 16 (2): 74-79.
- [14] 何孝园,朱鹏树,李大伟,等.核电厂应急柴油发电机组修

改试验启动方式的分析和讨论 [J]. 核安全, 2017, 16(2): 80-84.

- [15] 刘卓,金卉馨,李晓洋,等.基于菲克定律和传热传质相 似原理的含不凝气体冷凝换热研究 [J].核安全,2017,16
 (2):85-90.
- [16]于明锐,常猛,逯馨华,等.基于表面改性技术的PCS强 化换热效果分析[J].核安全,2017,16(2):91-94.

2017 年第三期

- [1] 孙冶,王鑫,何荣天,等.一起口岸放射性物品非法入境处置案例简析 [J]. 核安全,2017,16(3):1-5.
- [2] 张弛, 刘泽军. 瑞典核能立法与监管体制 [J]. 核安全, 2017, 16 (3): 6-11.
- [3] 李世欣,郑睿鹏,郎爱国,等. 核电厂 1E 级电缆一致性判 别方法的研究 [J]. 核安全, 2017, 16 (3): 12-17.
- [4] 张亚平,施国龙,钟志民,等. 堆外中子剂量计在 RPV 辐照监督中的应用[J]. 核安全,2017,16(3):18-23.
- [5] 王冠, 蒋忠湧, 翟国庆. 输变电设施电磁环境工频电场强度 控制限值安全性分析 [J]. 核安全, 2017, 16 (3): 24-29.
- [6] 彭慧,李雪琴,王晓涛,等.DSA介入医师受照剂量评价及
 管理探讨[J].核安全,2017,16(3):30-34.
- [7] 周萱. 秦山核电自然灾害的预防 [J]. 核安全, 2017, 16 (3): 35-41.
- [8] 兰瑞果,杨新利.核安全设备供应商实践核安全文化的途径 和方法探索[J].核安全,2017,16(3):42-47.
- [9] 韩治, 唐晖, 张春明, 等. 核电厂应急补水箱(ASG) 地震 响应对比分析[J]. 核安全, 2017, 16(3): 48-54.
- [10] 逯馨华,张红见,魏方欣,等.核电厂放射性废树脂处理技术对比研究[J].核安全,2017,16(3):55-61.
- [11] 杨德锋,肖小祥,张晔,等. 基于 RELWWER 程序的 WWER 型核电厂燃料棒破损分析 [J]. 核安全,2017,16(3):62-67.
- [12] 尹训强, 袁文志, 王桂萱. 考虑结构 地基 结构相互作 用的核电厂结构地震响应分析 [J]. 核安全, 2017, 16(3): 68-74.
- [13]张舒,吴鹏,张丹,等.先进三代核电 AP1000 丧失正常给 水事故研究 [J].核安全,2017,16(3):75-84.
- [14] 奚坤, 沈曙光, 杨晓强, 等. WWER-1000 反应堆 APP 工 作棒组的选取及其氙瞬态过程 [J]. 核安全, 2017, 16(3): 90-94.

2017 年第四期

[1]肖志,陶书生,韦力,等.关于加强国内核安全经验反馈工作的思考[J].核安全,2017,16(4):1-5.

- [2] 袁嘉琪,马刚,杨志义.核电厂后福岛时代的核安全独立监督[J].核安全,2017,16(4):6-10.
- [3]马凤金, 郭京, 陈荣达. 浅谈运行核电厂核安全监督的核安 全文化建设[J]. 核安全, 2017, 16(4): 11-15.
- [4] 邓冬,张发云,赵立彬,等.核电厂稳压器 SEBIM 安全阀 自主化检修经验反馈 [J].核安全,2017,16(4):16-21.
- [5] 冯燕, 路燕, 刘景宾, 等. 中国 AP1000 的人因工程安全审 评的几个问题[J]. 核安全, 2017, 16 (4): 22-28.
- [6]张瑾珠,吕钢,李佩,等. 乏燃料海运实物保护系统初步设想[J]. 核安全,2017,16(4):29-34.
- [7]周卫国. 核电站控制棒驱动机构驱动杆组件锁紧销安装质量 管理案例分析与回顾 [J]. 核安全, 2017, 16 (4): 35-38.
- [8] 孙树海,马国强,邹象,等.核电厂火灾异常重要性判定方法简介及适用性分析 [J].核安全,2017,16(4):39-45.
- [9]毕金生,靖剑平,乔雪冬,等.严重事故下安全壳内氢气行 为与风险分析[J].核安全,2017,16(4):46-52.
- [10] 卞玉芳,周林,李晶,等.国家核安全局核与辐射安全法规标准管理信息系统设计及关键技术研究[J].核安全,2017,16(4):53-60.
- [11] 房永刚, 王庆, 苏岩, 等. LBB 和 BP 在核电厂高能管道上 应用的差异性研究 [J]. 核安全, 2017, 16 (4): 61-65.
- [12] 胡安中,赵国斌,黄炳臣,等.浅析我国焊工资格考核的技术区别[J].核安全,2017,16(4):66-70.
- [13] 胡健,温丽晶,石兴伟,等.基于WGOTHIC程序的非能动安全壳冷却系统传热特性分析[J].核安全,2017,16
 (4):71-77.
- [14] 胡文超,靖剑平,赵传奇,等.基于AP1000型反应堆嬗变~(237) Np制备~(238) Pu研究[J].核安全,2017,16(4):78-83.
- [15]马应林,王庆斌,王宇飞,等.中国散裂中子源辐射安全 联锁门禁系统的设计[J].核安全,2017,16(4):84-89+94.
- [16]赵勇. 核电厂堆芯补水箱抗震分析 [J]. 核安全, 2017, 16 (4): 90-94.

2018年第一期

- [1]甘学英,蒋婧,祝兆文,等.核电厂放射性有机废液安全管理的建议[J].核安全,2018,17(1):1-5+94.
- [2] 凌礼恭,孙海涛,高晨,等. M310 改进型机组压力容器辐照监督要求及其在高温气冷堆辐照监督中的实践[J]. 核安全, 2018, 17 (1): 6-11.
- [3]孙树海,陶书生,郑丽馨,等.近年来核电厂执照运行事件 趋势分析 [J].核安全,2018,17(1):12-19.
- [4]张晓杰,吕云鹤,路燕. AP1000核电厂设备鉴定概述 [J].
核安全, 2018, 17 (1): 20-25.

- [5] 梅金娜, 蔡振, 韩姚磊, 等. EPRI《蒸汽发生器完整性评估导则》解读[J]. 核安全, 2018, 17 (1): 26-33.
- [6] 张发云,赵立彬,严得忠,李海涛,胡安中.小尺寸支管接头(BOSS头)焊接质量影响分析及其工艺改进[J].核安全,2018,17(1):34-37.
- [7] 宋辉,杨晓强,叶刘锁,等.田湾核电站3号机组物理启动 专用测量系统特性分析与调试研究[J].核安全,2018,17
 (1):38-43.
- [8] 赵丹妮,李娟,李明,等.9·11事件和福岛核事故后美国核
 电厂乏燃料水池事故缓解对策 [J].核安全,2018,17(1):
 44-51.
- [9]黄力,崔浩. 我国核电厂应急指挥部构建探讨 [J]. 核安全, 2018, 17 (1): 52-57.
- [10] 刘宇生,许超,安婕铷,等.非能动核电厂全厂断电事故现 象识别与排序研究[J].核安全,2018,17(1):58-65.
- [11]陈超,顾健.核电厂人因事件趋势分析和管理策略研究[J].核安全,2018,17(1):66-70.
- [12] 赵国志, 曲鹏. 铀浓缩系统事件 / 事故的思考与始发事件选 取研究 [J]. 核安全, 2018, 17 (1): 71-75.
- [13] 陈志林,池志远,张晏玮,等.确定我国核电厂运行许可 证延续安全论证基准的探讨[J].核安全,2018,17(1): 76-82.
- [14] 贺振宇,张强升,张发云,等. 核级碳钢小径薄壁管冷弯 拉伸试验不合格原因分析与质量控制措施[J]. 核安全, 2018, 17 (1): 83-86.
- [15]梁耀升,张忠伟,董海涛.安全相关涂层管理策略研究[J].核安全,2018,17(1):87-94.

2018年第二期

- [1]姜子英. 浅议核能、环境与公众 [J]. 核安全, 2018, 17 (2): 1-5.
- [2]张露,汪萍,彭浩.加强核设施退役能力建设,促进厂址无限制开放利用[J].核安全,2018,17(2):6-10.
- [3] 王娅琦,李世欣,庄少欣,等.浅谈美国核管会反应堆监督管理体系[J].核安全,2018,17(2):11-17.
- [4] 刘宇,崔贺锋,庞宗柱,等.非能动核电厂非安全系统实施 监管时的若干问题[J].核安全,2018,17(2):18-25.
- [5] 孙頔,刘锐,杨未东,等.某研究堆一回路冷却剂泄漏事件的审评[J].核安全,2018,17(2):26-30.
- [6] 焦振营, 张建文, 于枫婉, 等. CPR1000 核电厂乏燃料水池重 力补水的有效性分析 [J]. 核安全, 2018, 17 (2): 31-37.
- [7] 贺振宇, 张发云, 邓冬, 等. 高温气冷堆压力容器内壁浅表性 缺陷检验规则的探讨[J]. 核安全, 2018, 17(2): 38-42.

- [8] 俞杰,吴振龙,凌学会,等.碘吸附器有效性试验方法及评价[J].核安全,2018,17(2):43-47.
- [9]韦享雨.快速提升功率速率对芯块—包壳应力的影响规律[J].核安全,2018,17(2):48-51.
- [10] 纪忠华,王璐,李亮,等.中国东南沿海热带气旋强度变 化及对核电厂的影响分析[J].核安全,2018,17(2): 52-57.
- [11]李春,杨志义,丁超,等.基于 MC3D 软件对核电厂压力 容器蒸汽爆炸的重要参数计算及研究 [J].核安全,2018, 17(2):58-65.
- [12] 马亮,苑晨亮,崔家文,等.核实物保护系统薄弱性分析方法现状及发展[J].核安全,2018,17(2):66-70.
- [13]张红见,曹芳芳,潘玉婷,等.核材料管制范畴的探讨[J].核安全,2018,17(2):71-77.
- [14] 张学礼,牛洁,徐乐昌,等. RAD7 测氡仪测量结果差异的 探讨 [J]. 核安全, 2018, 17 (2): 78-88.
- [15]李炜炜,王晓峰,王桂敏,等. 2018年2月全国核与辐射 安全與情研判[J].核安全,2018,17(2):89-94.

- [1]张航源,胡世杰,杨强.发展核能助力建设美丽中国[J]. 核安全,2018,17(3):1-5.
- [2]孙学智,宋大虎,刘婷,等.推进核能安全发展和美丽中国 建设的思考和建议[J].核安全,2018,17(3):6-10.
- [3] 沈同强,张文宇. 认清当前核安全威胁形势,提升军队核应
 急处置能力[J]. 核安全, 2018, 17 (3): 11-16.
- [4] 穆海洋,宋雨,管运全.田湾核电站反应堆保护系统多样化的研究[J].核安全,2018,17(3):17-21.
- [5] 彭志珍. 18个月换料对 CPR1000 反应堆压力容器辐照监督 的影响 [J]. 核安全, 2018, 17 (3): 22-27.
- [6] 刘宇,李华升,刘泽军,等.实际消除早期放射性释放或大量放射性释放的安全目标定位研究[J].核安全,2018,17
 (3):28-35+94.
- [7]张天琦,于明锐,宋明强,等.核电厂安全壳内气溶胶热泳 沉积特性研究[J].核安全,2018,17(3):36-39.
- [8] 陈柏迪, 陈志东, 邓飞, 等. 伴生放射性矿固体废物的放射 性与重金属特性 [J]. 核安全, 2018, 17 (3): 40-46.
- [9] 吴耀,李莉,毛常磊,等.反应堆卸料燃料组件吊运跌落事 故辐射安全分析 [J].核安全,2018,17(3):47-51.
- [10] 郑开云,陈智.非能动核电厂1E级阀门电动装置的鉴定与 试验[J].核安全,2018,17(3):52-57.
- [11] 芮晓明,郝丽娜,王昆鹏.我国核电的效益及核安全保障基础概述 [J].核安全,2018,17(3):58-64.
- [12]李小华,杨钧翔,李俊杰,等. 2001年格鲁吉亚~(90)Sr

放射性同位素热源辐射事故介绍[J]. 核安全, 2018, 17 (3): 65-80.

- [13] 宋培峰,王晓峰,赵翰青,等.我国核科普面临的问题和建议[J].核安全,2018,17(3):81-88.
- [14] 刘瑞桓,张瀛,戴文博,等. 2018年4-5月全国核与辐射安
 全舆情分析及研判[J].核安全,2018,17(3):89-94.

2018年第四期

- [1] 郝慧杰,杜爱玲,赵旭东,等. 浅析 HAF603 与 ASME 差异
 [J]. 核安全, 2018, 17 (4): 1-4+23.
- [2]付陟玮,郑洁莹,钱鸿涛,等.F-C(频率后果)曲线在风险指引型监管中的应用研究[J].核安全,2018,17(4):5-9.
- [3] 鲍杰,崔军,付浩,等. CPR1000 核电厂 SGTR 事故长期阶段的分析研究[J].核安全,2018,17(4):10-16.
- [4] 熊冬庆,石红,王娅琦,等.核电厂阻尼器试验台的设计分析[J].核安全,2018,17(4):17-23.
- [5] 张国辉, 吴金晔. 核电站经验反馈工作的发展和管理改进 [J]. 核安全, 2018, 17 (4): 24-29.
- [6] 邵明刚,李春阳,文富平,等.放射性废物库退役源项的调查[J].核安全,2018,17(4):30-36.
- [7] 路燕,初起宝,徐宇,等.核动力厂蒸汽发生器模态分析[J].核安全,2018,17(4):37-43.
- [8] 刘泽军,李华升,刘宇,等.核电厂应急给水系统的设计配置及多样性问题研究[J].核安全,2018,17(4):44-50.
- [9] 陈钊, 崔大伟, 石秀安. 加速器驱动次临界系统束流瞬态分 析模型的开发 [J]. 核安全, 2018, 17 (4): 51-58.
- [10] 祝璐颖, 殳佳龙. 反应堆操纵员培训及考核的有关问题 [J] . 核安全, 2018, 17 (4): 59-63.
- [11] 乔雪冬,毕金生,胡健,等.基于 Gasflow 程序的非能动安 全压水堆氢气行为计算和分析 [J].核安全,2018,17(4): 64-69.
- [12] 唐桢, 徐政强, 伍建华, 等. 杭州 G20 峰会期间宁波市辐射安全保障工作经验及建议 [J]. 核安全, 2018, 17 (4): 70-74.
- [13] 张显生,刘彤,薛佳祥,等.事故容错燃料研发相关政策分析[J].核安全,2018,17(4):75-81.
- [14] 王宇飞,马应林,王庆斌,等.通用粉末衍射谱仪安全联锁 系统的设计与实现[J].核安全,2018,17(4):82-86+94.
- [15]张鸥,曾超,张弛.美国核管会年报研究和借鉴[J].核安全,2018,17(4):87-94.

2018年第五期

[1]万斌斌. 在建核电厂中美核安全监督对比研究 [J]. 核安全,

2018, 17 (5): 1-6.

- [2]杨晓强,叶刘锁,李载鹏,等.田湾核电站3号机组反应堆 首次无源启动[J].核安全,2018,17(5):7-13.
- [3] 赵宏,刘大虎.海阳核电站反应堆功率控制系统的信号分析 和试验[J].核安全,2018,17(5):14-19.
- [4] 徐高德,陈秀娟,钱晓明,等.三门核电厂维修规则中的性能会标设定研究[J].核安全,2018,17(5):20-25.
- [5] 程萍,李天鹞,尤晓健,等.海洋核动力平台前期执照申请的研究[J].核安全,2018,17(5):26-31.
- [6]马波, 倪南, 褚艳春, 等. 核电锚固技术与标准的对比研究 [J]. 核安全, 2018, 17 (5): 32-39.
- [7] 宋晓涛,陈宝文,袁其斌,等.核电厂复杂工况下运行团队的高效运作[J].核安全,2018,17(5):40-46.
- [8] 杜颖. 核电厂核探测技术的应用 [J]. 核安全, 2018, 17 (5): 47-52.
- [9] 王珏, 胡晨, 王琮, 等. 核电厂与核动力船舶执照申请事故 分析的对比研究 [J]. 核安全, 2018, 17 (5): 53-57.
- [10] 宋辉,杨晓强,叶刘锁,等.灰色系统理论在核动力领域的 应用分析与探讨[J].核安全,2018,17(5):58-64.
- [11] 殷德建, 芮晓明, 王昆鹏. 关于重要核设施规划限制区的几 点思考 [J]. 核安全, 2018, 17 (5): 65-70.
- [12]上官志洪,黄彦君,姜秋,等.美国核电厂取用水量及水资 源条件的研究[J].核安全,2018,17(5):71-79.
- [13] 李小华,李俊杰,陈维,等. 2000 年泰国北榄府医用 ⁶⁰Co 源辐射事故介绍 [J]. 核安全, 2018, 17 (5): 80-94.

2018 年第六期

- [1]汤搏.正确的指导思想才能引导正确的行动——《核安全》 杂志创刊十五周年有感[J].核安全,2018,17(6):1-2.
- [2]张天祝. 立足新时代坚持新理念再创新辉煌——庆祝《核安 全》创刊15周年[J]. 核安全, 2018, 17(6): 3-5.
- [3] 柴建设, 王晓峰, 许龙飞, 等. 创刊十五载助力核安全——《核安全》杂志十五年发展综述 [J]. 核安全, 2018, 17(6): 6-10.
- [4] 苏圣兵,王彦东,李斌,等.安全文化是一种生活方式 [J]. 核安全,2018,17(6):11-17.
- [5]周永平.克难起步创刊创新发展再造佳绩——写在《核安全》
 创刊15周年[J].核安全,2018,17(6):18-19.
- [6]陈刚.《核安全法》的若干看点[J]. 核安全, 2018, 17(6): 20-24.
- [7]杨丰兆,李学法,周鑫,等.高温气冷堆核电厂建造阶段的 核安全监督[J].核安全,2018,17(6):25-31.
- [8] 毛欢,别业旺,张舟,等.我国核电厂运行技术规格书现状 分析及对策[J].核安全,2018,17(6):32-36.

- [9] 刘宇,杨鹏,冯进军,等. AP1000 非能动堆芯冷却系统热态 性能试验的安全监管[J]. 核安全,2018,17(6):37-43.
- [10]曹杰,查卫华,高斌,等.基于关键链技术的核电大修进度 管理方法研究[J].核安全,2018,17(6):44-55.
- [11]张仰程.运行技术规范中的一回路压力定值[J].核安全, 2018,17(6):56-60.
- [12] 刘运陶, 吕丹, 赵善桂, 等. 核燃料循环设施高效空气过滤器使用问题的探讨 [J]. 核安全, 2018, 17(6): 61-65.
- [13]张博平,初永越,黄志超,等.《改进核电厂维修有效性的 技术政策(试行)》的解读[J].核安全,2018,17(6): 66-71.
- [14] 刘宇生,薛艳芳,马帅,等. 热工水力验证试验评价的关键问题[J]. 核安全,2018,17(6):72-78.
- [15]马应林,王庆斌,王宇飞,等.一种硼中子俘获治疗装置的辐射安全联锁系统设计[J].核安全,2018,17(6): 79-84.
- [16] 刘单,陈祥磊,毕明德,等.民用核安全辐射监测设备十年 发展[J].核安全,2018,17(6):85-90.
- [17] 王宏印,毕涛,宋东风,等.设备产业链质量管理评估标准的研究与建立[J].核安全,2018,17(6):91-94.

2019 年第一期

- [1] 陈瑾,程亮,马欢欢,等.核安全监管能力建设基本框架构 建研究 [J].核安全,2019,18(1):1-7.
- [2]张志强,林继德,马培锋,等.核电设备监理实践中的合作 共赢模式[J].核安全,2019,18(1):8-12.
- [3] 盛朝阳, 路燕, 高晨, 等. ASME 规范的设计安全系数及调整因素 [J]. 核安全, 2019, 18(1): 13-16.
- [4]肖军,曾广建,汪宏峰,等.废旧放射源收贮车防范系统的 设计及建议[J].核安全,2019,18(1):17-23.
- [5]刘燕芳,赵兵,李楠,等. RCA方法在某核电站设备故障分析中的应用[J].核安全,2019,18(1):24-30.
- [6] 蔡振,梅金娜,韩姚磊,等. 蒸汽发生器完整性评估的现状 及展望[J]. 核安全, 2019, 18(1): 31-39.
- [7]马谷剑,陈平. 福清核电厂安全壳的老化管理 [J]. 核安全, 2019, 18 (1): 40-46.
- [8] 尹剑航,苏小雨,胡宇航.核电厂运行值绩效观察的评估标 准[J].核安全,2019,18(1):47-52.
- [9] 孙琳, 浦晨晨, 闫雄伟. XX 核燃料研制项目核材料衡算与 评价的难点分析 [J]. 核安全, 2019, 18 (1): 53-57.
- [10] 许利民."华龙一号"压力容器的设计改进和优化 [J]. 核 安全, 2019, 18 (1): 58-65.
- [11]何川, 邹全, 李松发, 等. 核动力装置的事故诊断系统[J]. 核安全, 2019, 18(1): 66-71.

- [12] 赵祥鸿,周鑫,孔晓中,等. AP1000 蒸汽排放组件卡涩问题及解决[J]. 核安全, 2019, 18 (1): 72-76.
- [13] 段锋,张珍.中国核能协会的同行评估与国际原子能机构 的运行安全评审的比较分析 [J].核安全,2019,18(1): 77-82.
- [14] 荆旭,肖军. 浮动堆抗地震设计问题 [J]. 核安全, 2019, 18 (1): 83-87.
- [15] 王康,高桂清,张晶晶,等. 军队加强核安全能力建设的探讨 [J]. 核安全, 2019, 18 (1): 88-94.

2019年第二期

- [1] 董晓璐,刘景宾,孔静.小型模块堆的人因工程审评——
 以高温气冷堆示范工程为例 [J].核安全,2019,18(2):
 1-8.
- [2]郑黄婷,许明发,向辉云,等. 铀尾矿库辐射安全问题的现 状分析及对策 [J]. 核安全, 2019, 18 (2): 9-13.
- [3] 李小华,李俊杰,陈维,等.一起工业探伤辐射事故的国际 救援概况与分析[J].核安全,2019,18(2):14-35.
- [4] 彭一鹏,奚坤,潘登,等.双区氯盐快堆的增殖及嬗变性能 分析[J]. 核安全, 2019, 18 (2): 36-42.
- [5]阳小华,曾铁军,万亚平,等.放射性物质个体自主安全智能[J].核安全,2019,18(2):43-48.
- [6]杨舒琦,李兰,谭怡,等.华龙一号 SGTR 事故源项分析研究[J].核安全,2019,18(2):49-53.
- [7] 潘红洋,沈力强,张少君.法律法规在核级阀门设计制造中的指导和运用[J].核安全,2019,18(2):54-62.
- [8]张婷婷,夏冬琴,李桃生,等.公众认知对核电接受度的影响[J].核安全,2019,18(2):63-70.
- [9]张廉,蔡汉坤. 中美核电厂领执照者关于运行事件报告的比较研究[J]. 核安全, 2019, 18(2): 71-76.
- [10] 岑腾跃. 三代核电堆芯补水箱制造中不符合项及处理意见 [J]. 核安全, 2019, 18(2): 77-82.
- [11] 肖军,曾广建,梁梅燕,等.浙江省辐射应急演习中现场监测与处置应对的总结[J].核安全,2019,18(2):83-89.
- [12] 牛世鹏, 王聪, 王高鹏, 等. 核电厂严重事故下关于操作人员的可达性分析 [J]. 核安全, 2019, 18 (2): 90-94.

- [1] 李小华,何列,李世祯,等.浅谈核能和核技术的和平利用[J].核安全,2019,18(3):1-10.
- [2]张航源,杨强,刘秋实,等.利用好核技术,助力污染防治 攻坚战[J].核安全,2019,18(3):11-14.
- [3]姜羲元,李文静.核电科普宣传工作应重视环保及安全方面 的宣传[J].核安全,2019,18(3):15-18.

- [4] 袁曼,罗晓元. HAF003 与 ASME 质量保证体系的对比研究
 [J]. 核安全, 2019, 18 (3): 19-24.
- [5]赵登山,谢小明,李福春,等. 乏燃料水池贮存格架水下安装工艺研究[J]. 核安全, 2019, 18 (3): 25-30.
- [6] 石洋,苑皓伟,张鹏,等.非能动压水堆波动管内汽液逆流 试验的研究 [J].核安全,2019,18(3):31-36.
- [7] 何雅杰. 核安全设备零件制造的质保分级方法探讨 [J]. 核 安全, 2019, 18 (3): 37-42.
- [8] 陈荣达. 核安全技术体系框架的探讨 [J]. 核安全, 2019, 18 (3): 43-50.
- [9] 项建英, 王进, 杨凯. EPR 机组再生式热交换器的调试及现 场监督 [J]. 核安全, 2019, 18 (3): 51-55.
- [10] 刘宇生, 阿不都赛米·亚库甫, 庄少欣, 等. 自然循环装置 试验初始条件实现方法研究 [J]. 核安全, 2019, 18 (3): 56-61.
- [11] 蔡志云,赵禹,王保平.模块式小型堆化学和容积控制系统的仿真分析 [J].核安全,2019,18(3):62-66.
- [12] 苑晨亮,马亮,崔家文,等.核电厂工控系统信息安全评估 方法的研究 [J].核安全,2019,18(3):67-73.
- [13] 赵立彬,石红,李海涛,等.浅析 ISO9606 对我国 HAF603 修订的借鉴 [J].核安全,2019,18 (3):74-79.
- [14] 段军, 邹象, 于大鹏, 等. 压水堆一回路抽真空排气造成压力温度超值的研究 [J]. 核安全, 2019, 18 (3): 80-83.
- [15]赵国志. 铀浓缩厂人因失效分析研究 [J]. 核安全, 2019, 18 (3): 84-88.
- [16] 张敏,曹芳芳,张亮,等.核燃料组件运输容器的临界安全 分析[J].核安全,2019,18(3):89-94.

2019 年第四期

- [1]齐媛,杨岩飞,郑洁莹,等.美国核安全文化监督管理及启示[J].核安全,2019,18(4):1-6.
- [2] 孙亚敏,丁逊,方剑青,等.高压电离室校准周期的分析和 调整[J].核安全,2019,18(4):7-11.
- [3] 甄丽颖,林颖慧. 阳江核电站的排放物及环境样品中氚的放射性水平[J]. 核安全, 2019, 18(4): 12-17.
- [4] 王杰,周兆宇,陈运利,等.飞凤山处置场各阶段活动许可 取证的经验反馈 [J].核安全,2019,18(4):18-23.
- [5]于世昆,肖春梅. 核电厂放射性废气处理工艺设备的抗震设 计要求 [J]. 核安全, 2019, 18 (4): 24-27.
- [6] 王聪,朱文韬,王高鹏,等.严重事故下核电厂设备可用性 论证 [J]. 核安全, 2019, 18 (4): 28-32.
- [7] 贾梅兰,刘敏,李澎,等. 日本乏燃料的安全管理及对我国的启示 [J]. 核安全, 2019, 18 (4): 33-40.
- [8]王梦溪,龙亮,薛娜,等.华龙一号事故后食品污染水平评

价?[J]. 核安全, 2019, 18(4): 41-47.

- [9] 崔军,鲍杰,时维立. 核电厂传热管破裂后防止蒸汽发生器 满溢的研究 [J]. 核安全, 2019, 18 (4): 48-55.
- [10] 马应林,李俊刚,张会杰,等.大型粒子加速器安全联锁钥
 匙系统的设计[J].核安全,2019,18(4):56-62.
- [11] 庄少欣, 王娅琦, 孙微, 等. 基于 TRACE 的大功率非能 动核电厂 SBLOCA 事故计算及敏感性分析 [J]. 核安全, 2019, 18 (4): 63-69.
- [12] 王飞, 宋辉. 核动力装置混合式状态监测系统的研究 [J]. 核安全, 2019, 18 (4): 70-78.
- [13] 杨旭,邱金荣,杨永强,等.反应堆准确实时仿真程序的开发[J].核安全,2019,18(4):79-86.
- [14] 米宇豪,曾志,马豪,等.非人类物种剂量评价低水平放射
 性测量的应用进展[J].核安全,2019,18(4):87-94.

2019 年第五期

- [1]陈胜.民用核安全设备成套供货质量保证大纲的建立及运行特点[J].核安全,2019,18(5):1-5.
- [2] 刘成运,张延云,王玢,等.核电厂运行安全性能指标的监督核查[J].核安全,2019,18(5):6-12.
- [3] 霍嘉杰,郑岳山,姚琳,等. 乏燃料干法贮存标准和监管要求浅析[J]. 核安全, 2019, 18 (5): 13-18.
- [4]赵潇,闫平,张国光.移动式车辆检查系统调试场地的辐射 安全联锁系统设计[J].核安全,2019,18(5):19-25.
- [5]孙娜,王占元,张杰.核电厂仪控系统纵深防御体系 [J].
 核安全,2019,18(5):26-32.
- [6]梁贵渊,邓飞,陈万良,等.大亚湾核电基地周围海洋沉积物的放射性水平[J].核安全,2019,18(5):33-37.
- [7] 黄甦. 基于 TXS/T2000 核电厂 DCS 信号失效下质量位设置 [J]. 核安全, 2019, 18 (5): 38-42.
- [8] 张适,张博平,初永越,等. M310 机组维修风险评价和管理的研究[J]. 核安全, 2019, 18 (5): 43-48.
- [9]杨智,吴彩霞. 维修规则功能失效判断准则研究 [J]. 核安全, 2019, 18 (5): 49-53.
- [10] 王飞, 宋辉, 毛伟. 基于神经网络的核电厂环境监测系统的 研究 [J]. 核安全, 2019, 18 (5): 54-61.
- [11]张祥,薛艳芳,刘宇生,等.压力容器外部冷却沸腾临界过 程数值模拟研究[J].核安全,2019,18(5):62-67.
- [12] 陈文涛,陈万良,李灵娟.应急情景下便携式高纯绪 γ
 能谱测量系统的模拟应用 [J].核安全,2019,18(5):
 68-72.
- [13] 贾红锋,曲晓宇,焦利辉,等.核安全压力容器非径向接管的应力特性研究[J].核安全,2019,18(5):73-78.
- [14]赵斌,战俭,刘洪,等.中国海关与邻国开展核安全联合演

练的实践经验 [J]. 核安全, 2019, 18 (5): 79-84.

- [15]刘建昌,沈永刚,陈韵茵,等.维修停堆模式下完全丧失余 热排出系统事故分析[J].核安全,2019,18(5):85-89.
- [16] 技术引领进步创新驱动发展——中国核工业第五建设有限公司[J]. 核安全, 2019, 18(5): 90-92.
- [17] 打造中国装备制造业的"国之重器"——上海电气核电设备 有限公司 [J]. 核安全, 2019, 18 (5): 93-94.

2019 年第六期

- [1]阳小华,胡杰,毛宇,等.放射性物质群体自主安全智能[J].核安全,2019,18(6):1-5.
- [2]陈艳芳,刘海鹏.基于虚拟技术的核电站应急辅助系统的开发[J].核安全,2019,18(6):6-11.
- [3] 王昆鹏,许超,李聪新,等. 核反应堆物理热工耦合的瞬态 分析方法研究[J]. 核安全, 2019, 18(6): 12-17.
- [4] 刘顺,罗杰,陈衡,等. γ射线数字成像在核电厂应用的可
 行性探讨 [J].核安全,2019,18(6):18-22.
- [5] 兰志刚,于汀.海上浮动核电站周边油田井喷事故的安全风险问题研究[J].核安全,2019,18(5):23-29.
- [6]张博平,周晓蕊,李晓洋,等.浅析美国核管会对维修规则 进行基准检查的经验[J].核安全,2019,18(6):30-36.
- [7] 王钦,毕金生,丁铭. AP1000 核电站严重事故下熔融物与混 凝土相互作用的研究 [J]. 核安全, 2019, 18 (6): 37-43.
- [8] 付浩,王列辉,甄飞强,等.超声波流量计用于核电厂主给 水测量的问题探讨超声波流量计用于核电厂主给水测量的问 题探讨[J].核安全,2019,18(6):44-48+55.
- [9] 耿璞, 凌礼恭. 核电厂核级管道与支管管座焊缝质量问题的 探讨[J]. 核安全, 2019, 18 (6): 49-55.
- [10] 王照, 冯丙辰. 浮动核电厂的海浪灾害设计基准探讨 [J]. 核安全, 2019, 18 (6): 56-61.
- [11]周涛,秦雪猛,朱亮宇,等.超临界水喷放泄压因素的权重 计算[J].核安全,2019,18(6):62-66.
- [12] 刘大虎, 张强升, 江国梁. 基于反应谱法的 IE 级配电盘抗 震性能试验 [J]. 核安全, 2019, 18 (6): 67-73.
- [13]杨智博,周国良,杨宇,等.核电站地震后的处置及恢复策略[J].核安全,2019,18(6):74-79.
- [14] 李华,孟祥盖,霍嘉杰,等.核电站关键设备事故工况下抗 震性能研究 [J].核安全,2019,18(6):80-84.
- [15]张盼,潘昕怿,赵传奇,等.核电厂反应堆小幅功率提升技术的应用[J].核安全,2019,18(6):85-90.

2020年第一期

[1]张子杰,赵坤,刘勇,等.以案例来探讨人员素质与辐射安全的关系[J].核安全,2020,19(1):1-7.

- [2]李小华,王超,任廷伟,等.一起医用电子加速器辐射事故 分析及救援概况[J].核安全,2020,19(1):8-31.
- [3] 黄高峰, 宫宇, 方立凯, 等.CANDU6 核电厂无过滤安全壳 通风模式的研究 [J]. 核安全, 2020, 19(1): 32-35.
- [4] 米宇豪,以恒冠,廖运璇,等.油气工业中放射性废物的处理和处置[J].核安全,2020,19(1):36-42.
- [5] 刘建昌, 沈永刚, 陈韵茵, 等. 摇摆条件下两环路自然循环 回路特性分析 [J]. 核安全, 2020, 19 (1): 43-49.
- [6]夏凡,廉超,王明煌,等.空气污染排放视角下中国核电的 健康效益[J].核安全,2020,19(1):50-57.
- [7] 陈永祁,崔禹成,马良喆.核电厂阻尼器的应用及创新[J]. 核安全,2020,19(1):58-67.
- [8] 王璟增.一回路核级设备磨损的监测模型[J].核安全, 2020, 19(1): 68-74.
- [9] 徐园,孔海宇,王希涛,等.水体环境中的放射性污染及测量[J].核安全,2020,19(1):75-79.
- [10] 马谷剑,魏松林,陈平.核电厂埋地管的综合监测及评估 [J].核安全,2020,19(1):80-84.

2020年第二期

- [1] 王海峰,于家欢,赵锋,等.新冠肺炎疫情响应与核应急的 异同及经验互鉴[J].核安全,2020,19(2):1-6.
- [2] 邹屹峰.新冠肺炎给核应急工作带来的三点启示[J].核安 全,2020,19(2):7-12.
- [3] 肖鹏,张文芊,喻正伟,等.雄安新区 γ 辐射剂量率水平初 步调查[J].核安全,2020,19(2):13-17.
- [4] 熊铁军,钟丁生,蔡小杰,等.核辐射探测实验中核辐射场 模拟与安全研究[J].核安全,2020,19(2):18-22.
- [5]黄伊林,陈宝才,冯亮亮,等.海域自动连续监测辐射剂量
 率影响机制初步研究[J].核安全,2020,19(2):23-28.
- [6]林天龙,苏志勇,王用超,等.减少反应堆内活化腐蚀产物进入保存水池的方案研究[J].核安全,2020,19(2):29-32.
- [7] 李华,赵英昆,孟祥盖,等.核电站关键设备存储装置的抗震性能研究[J].核安全,2020,19(2):33-38.
- [8] 傅小城, 黄晓冬, 杜风雷. 城镇化对我国核电厂厂址选择的 影响研究 [J]. 核安全, 2020, 19 (2): 39-44.
- [9] 刘燕芳,李楠,田瑞.提高核电站 DCS 机柜中保险丝检测效 率的一种方法研究 [J].核安全,2020,19(2):45-50.
- [10] 王登辉,赵宗方,何振林,等.俚玻璃探测器辐射特性的试验研究[J].核安全,2020,19(2):51-55.
- [11]赵培祥,江俊,曾毅,等.实物保护系统的定量评估模型之研究现状及发展[J].核安全,2020,19(2):56-63.
- [12]徐智,高泉源.熔盐堆非安全级电源向安全级仪控系统供电

的设计评估 [J]. 核安全, 2020, 19 (2): 64-71.

- [13] 邓纯锐,张明,张航,概率安全评价在核电厂安全设计中的 应用研究[J].核安全,2020,19(2):72-77.
- [14] 吴鹏, 王冠一, 张阳.CPR1000 核电厂全厂断电事故情况下 严重事故缓解措施有效性研究 [J].核安全, 2020, 19(2): 78-85.

2020年第三期

- [1] 邹屹峰. 普及核安全知识助力全面建成小康社会 [J]. 核安 全, 2020, 19 (3): 1-5.
- [2] 陈小兰, 伍则文, 蓝浩洋, 等. 公众对于核能利用的认知研究[J]. 核安全, 2020, 19(3): 6-13.
- [3]杨丰兆,周鑫,李学法,等.PSA风险重要度分析在高温 堆调试监督中的应用探索[J].核安全,2020,19(3): 14-18.
- [4] 韩凯.国和一号与 CPR1000 的 SGTR 事故响应比较 [J].核 安全, 2020, 19 (3): 19-25.
- [5]张瑞光,刘瑞翔,李中林.热带气旋对田湾核电站的影响[J].核安全,2020,19(3):26-33.
- [6] 李小华,王翊年,王家豪,等.2014 年秘鲁 1921r 工业探伤辐射事故概况与分析 [J].核安全,2020,19 (3):34-52.
- [7] 闫怀超, 陈政熙. 核电行业工控网络安全整体解决方案研究 [J]. 核安全, 2020, 19(3): 53-58.
- [8]高业栋,韩良文,夏星汉,等.HFETR80MW运行时二次侧 水流量衰减瞬态分析[J].核安全,2020,19(3):59-64.
- [9] 毕树茂,张丹,邱志方,等.模块式小堆稳压器安全阀容量 设计方法研究[J].核安全,2020,19(3):65-69.
- [10] 李志华,刘敏,曹俊杰.对我国运行核电厂退役准备的思考 与建议[J].核安全,2020,19(3):70-75.
- [11] 韩良文,高业栋,夏星汉,等.基于 MCNP 的 HPGe 探测器 无源效率刻度 [J].核安全,2020,19(3):76-80.
- [12]李华,霍嘉杰,赵英昆,等.核电厂关键设备事故工况下密封性能研究[J].核安全,2020,19(3):81-85.

2020年第四期

- [1]周兆宇,王杰.飞凤山低、中放固体废物处置场运行与处置
 管理实践[J].核安全,2020,19(4):1-7.
- [2] 丁超, 徐朋,杨志义.严重事故氢气监测仪定期试验现场监督[J].核安全,2020,19(4):8-12.
- [3] 郝丽娜, 柴蕊, 王茂杰, 等. 我国核电厂运行许可证内容演 化概论 [J]. 核安全, 2020, 19 (4): 13-19.
- [4] 刘国柱.1250 MW 核电机组汽轮发电机组非核蒸汽冲转实践 [J]. 核安全, 2020, 19 (4): 20-25.
- [5] 郭鑫, 安洪振, 朱剑伟, 等. 技术状态管理方法在核电厂设

计过程中的应用研究 [J]. 核安全, 2020, 19 (4): 26-30.

- [6] 温玉姣,封祎,栾海燕,等,英国核安全监管实践(2018—2019)研究[J].核安全,2020,19(4):31-38.
- [7]马若群,吕云鹤,盛朝阳,等.浅析美国核电厂执照更新的物项筛选原则[J].核安全,2020,19(4):39-44.
- [8] 王不二, 汪振, 陈超, 等. 核电厂定量安全目标溯源及其存 在问题剖析 [J]. 核安全, 2020, 19(4): 45-52.
- [9]杨晓.乏燃料后处理屏蔽小室地震下安全性能分析 [J].核 安全,2020,19(4):53-62.
- [10] 卢俊晶,朱柏霖,张天琦,等.熔融物与混凝土相互作用
 时熔池内的化学反应研究[J].核安全,2020,19(4):
 63-70.
- [11] 胡玉杰, 王杰, 程芳权, 等. 一种基于 AES 和 RSA 的核应 急安全数据通信系统 [J]. 核安全, 2020, 19 (4): 71-75.
- [12] 周家驹, KIKURA Hiroshige.LFCM 炉内流动特性的数值分 析 [J]. 核安全, 2020, 19(4): 76-82.
- [13] 谢树青,安宁,吴磊,等.中子周围剂量当量率测量技术的 发展与现状[J].核安全,2020,19(4):83-87.

2020 年第五期

- [1]汤日辉.核电厂工程建设期间质量异常全面管理探讨[J].
 核安全,2020,19(5):1-4.
- [2]程芳,窦义芳,王玉超.辐射环境政府信息服务体系的建构研究[J].核安全,2020,19(5):5-10.
- [3] 滕磊,王帅,彭靖.浅谈我国核电厂退役安全监管现状[J]. 核安全,2020,19(5):11-15.
- [4] 蔡军,徐杰,黄文博,等.电子辐照实验装置辐射安全联锁系统的设计与实现[J].核安全,2020,19(5):16-21.
- [5] 陈德育,汤泽平,龚杰.我国城市放射性废物库潜在污染因素分析及对策建议[J].核安全,2020,19(5):22-26.
- [6] 黄彦君,沙向东,祝兆文,等.压水堆核电厂流出物监测的 关键核素研究[J].核安全,2020,19(5):27-34.
- [7]丁超,徐朋,仇苏辰,等.核电厂氢气控制系统布置原则与
 现场踏勘问题探讨[J].核安全,2020,19(5):35-40.
- [8] 宫宇,王宝祥,詹文辉,等.风险指引型安全分级及应用研究[J].核安全,2020,19(5):41-48.
- [9] 赵世成,王凯佩,杨静远,经验反馈在核电厂建设过程中的 作用[J].核安全,2020,19(5):49-52.
- [10] 马帅,魏超,贾斌,等.核电厂主泵转子临界转速研究 [J]. 核安全,2020,19(5):53-57.
- [11] 刘宇生,吴鹏,刘希瑞,等.浮动小型堆堆芯热工水力验证能力分析[J].核安全,2020,19(5):58-63.
- [12] 陈一伟,张正春,张强升,等.核级过滤器的抗震计算方法 研究[J].核安全,2020,19(5):64-68.

- [13] 刘春容,陈薪正,贺东钰,等.CPR1000核电厂严重事故环 境条件计算分析[J].核安全,2020,19(5):69-74.
- [14]乔宁,刘景宾.故障树方法计算核电厂数字化保护系统可靠
 性[J].核安全,2020,19(5):75-79.

2020 年第六期

- [1]项媛媛.浅谈核电工程 EPC 和独立监理模式下的业主质量管理[J].核安全,2020,19(06):1-5.
- [2] 栾海燕,封祎,韩福眷,余少青,逯馨华.全球新冠肺炎疫 情时期的核安全监管[J].核安全,2020,19(06):6-11.
- [3] 贠彦祺,任坤贤,王强,李晨晖.某高速公路绿色通道X射
 线车辆检查系统环境辐射剂量率计算与实测对比研究[J].
 核安全,2020,19(06):12-16.
- [4] 徐永良. 浅谈核电厂工作场所放射性空气污染应对措施[J].
 核安全, 2020, 19 (06): 17-22.
- [5] 滕磊,刘志辉,袁和川.我国核电厂退役过程监管要求及建议[J].核安全,2020,19(06):23-28.
- [6] 吴敏,郑佳强.某核电站高压空压机高温报警停机故障处理 [J].核安全,2020,19(06):29-35.
- [7] 盛美玲, 丘锦萌, 唐辉, 杨志义.华龙一号余热排出系统破 口事故分析 [J].核安全, 2020, 19 (06): 36-43.
- [8] 董晓璐, 孔静, 刘景宾. 核电站控制室布置与盘台设计中的 人因工程准则[J]. 核安全, 2020, 19(06): 44-49.
- [9] 姜韶堃,赵罗生,杨志义,詹惠安,陶志勇,赵宁,丁超.严重事故下氢气爆燃环境模拟试验[J].核安全,2020,19(06):50-53.
- [10] 吴廉巍, 闫超星, 杜为安, 张翼, 刘成洋. 摇摆条件下喷淋 液滴运动特性研究 [J]. 核安全, 2020, 19 (06): 54-59.
- [11] 韩瑞,段亚飞,赵懿珺,纪平,康占山,王韶伟.气泡幕技 术在滨海核电厂取水防控中的应用[J].核安全,2020,19 (06):60-66.
- [12]陈玉修,王煜宏,罗海英,英国核动力厂项目法规标准体系及监管理念研究[J].核安全,2020,19(06):67-72.
- [13] 胡帮达, 贾啥. 日本核损害赔偿中的替代性纠纷解决机制及 其启示 [J]. 核安全, 2020, 19 (06): 73-79.
- [14] 王桂敏,张瀛,戴文博,刘瑞桓,于大鹏,李杨.核与辐射安全科普展厅建设现状分析及对策建议[J].核安全, 2020,19(06):80-85.
- [15]张瀛,王桂敏,戴文博,刘瑞桓,于大鹏.我国乏燃料后处 理项目公众沟通策略研究[J].核安全,2020,19(06): 86-92.
- [16]高晨,盛朝阳,初起宝,马若群,贾盼盼.核电机械设备
 国产化材料力学性能验收值确定方法研究[J].核安全,
 2020,19(06):93-98.

- [17]朱光昱,全峰阳,曾骁,元一单.压水堆核电厂安注管线内
 不凝结性气体聚集现象仿真研究 [J].核安全,2020,19
 (06):99-103.
- [18]申红,吉辉,张志保,杨晓伟,张宇,刘运陶,阙骥,赵善桂,刘天舒.液化均质系统两种工艺改进方案的安全性及适用性分析比较与建议[J].核安全,2020,19(06):104-107.
- [19] 陈一伟,黄炳臣,沈伟,石红,张强升.核级设备抗震分析中螺栓应力的评定方法[J].核安全,2020,19(06): 108-110.
- [20] 孙海涛,吴彩霞,吕云鹤,张晏玮,初起宝,车树伟,侯春林,马若群.全国核电厂关键物项材料老化数据平台建设分析[J].核安全,2020,19(06):111-115.
- [21] 王杨, 王海理, 蕙瑾~(60) Co 辐照装置退役存在的问题 及解决对策 [J].核安全, 2020, 19 (06): 116-120.
- [22]刘景宾,乔宁,董晓璐,陈子溪.核电厂仪控系统的网络安 全等级防护研究[J].核安全,2020,19(06):121-126.
- [23] 刘健,李帷,张琨,王一川,李扬,兰兵. 压水堆核电厂氚 产生量的影响因素计算与分析 [J]. 核安全,2020,19(06): 127-132.
- [24] 张强升,王德军,史强,陈一伟,沈伟,李亮.核电站空调
 水系统弹簧式安全阀结构设计与抗震分析研究 [J].核安全,2020,19(06):133-141.
- [25]程芳,姜启英,阚丽萍,窦义芳.微塑料污染防治的建构研 究[J].核安全,2020,19(06):142-146.

2021年第一期

- [1] 孙海涛,吴彩霞,马若群,等.核电厂通用老化经验报告分析与编制建议[J].核安全,2021,20(1):1-5.
- [2] 张发云,张强升,贺振宇,等.民用核安全设备许可审评中的常见问题及建议[J].核安全,2021,20(1):6-10.
- [3] 苏超丽,梁明浩,邓飞,等.浅析锆钛矿选矿工艺的辐射防 护和辐射环境安全[J].核安全,2021,20(1):11-16.
- [4]高鹏,刘陆,甘睿琳,等.北京市地铁站台及车箱内氡浓度 水平调查[J].核安全,2021,20(1):17-21.
- [5]张义科,彭军,李福春,等.反应堆管道系统水锤现象不利影响及防治措施研究进展[J].核安全,2021,20(1):
 22-26.
- [6]郑成成,陈永祁,郑久建,等.核电厂主蒸汽管道阻尼减振
 与抗震分析[J].核安全,2021,20(1):27-35.
- [7] 白日亮, 原瑜.核电仪表罐焊接工艺研究[J].核安全, 2021, 20(1): 36-40.
- [8] 史国宝, 郭东海, 陈松, 等 .AP1000 依托项目中压移动电源 应用研究 [J]. 核安全, 2021, 20 (1): 41-47.

- [9] 王逊,田宇,黄力.美国核安全管理体制与法律体系探究及 启示 [J].核安全,2021,20(1):48-53.
- [10]刘姚锋, 耿波, 高星, 等. 核电厂高风险作业项目跟踪管理 系统的设计与实现 [J]. 核安全, 2021, 20 (1): 54-58.
- [11] 孙明, 郁杰.铅铋快堆一回路充排系统可靠性分析 [J].核 安全, 2021, 20 (1): 59-64.
- [12] 李冲,高业栋,韩良文,等.HFETR 热功率测量系统误差分 析 [J].核安全,2021,20(1):65-69.
- [13] 王铁骊,高山,刘永,等.核安全文化与核安保文化的共生 性研究[J].核安全,2021,20(1):70-75.
- [14] 赵鹏,李松发,韩良文,等.状态报告管理在 HFETR 上的 应用分析 [J].核安全,2021,20(1):76-81.
- [15]赵国志,郝悦,曲鹏,等.浅谈除核电外核燃料循环中物料
 泄漏事故的隐患排查[J].核安全,2021,20(1):82-86.
- [16] 戴立操,高山,刘永.核安全科学的未来发展方向——组织 弹性研究[J].核安全,2021,20(1):87-92.
- [17] 中核建中核燃料元件有限公司.初心与使命铸就最强"核能芯"[J].核安全,2021,20(1):93-95.
- [18] 广西壮族自治区辐射环境监督管理站.落实监测监管技术帮扶帮助企业发展成效显著[J].核安全,2021,20(1): 96-97.

2021 年第二期

- [1] 刘成运,张国旭,李学法,等.安全性能指标在核安全监管中的应用实践[J].核安全,2021,20(2):1-6.
- [2]李宁,徐俊龙,崔毅,等.优化核级阀门变更审查流程,提 高核安全治理精细化水平[J].核安全,2021,20(2):7-11.
- [3] 王鑫, 林权益, 王叶, 等. 推进海洋核应急能力建设的思考 和建议 [J]. 核安全, 2021, 20 (2): 12-17.
- [4] 刘新利.海阳核电厂设备监造管理实践[J].核安全,2021, 20(2):18-24.
- [5] 凌礼恭,李小龙,贾盼盼. 滨海核电机组海水系统部件腐蚀
 与防护现状 [J]. 核安全, 2021, 20 (2): 25-31.
- [6]谢梅,张远奎,刘亚军,等.核安全设备竣工文件质量改进
 建议[J].核安全,2021,20(2):32-37.
- [7]赵玄,周小龙.蒸汽发生器传热管氦检漏定量定位技术分析 及验证[J].核安全,2021,20(2):38-43.
- [8] 李小华,王翊年,李俊杰,等.1998年伊斯坦布尔 60Co 源辐射事故概况与分析 [J].核安全,2021,20 (2):44-58.
- [9] 胡攀, 蔡汉坤, 张浩.核电厂事件编码体系对比研究[J]. 核安全, 2021, 20(2): 59-66.
- [10] 程坤,邱志方,陈宝文,等.海洋条件下浮动反应堆运行特性的数值模拟研究[J].核安全,2021,20(2):67-72.
- [11] 王振宇, 黄伟奇, 孙健, 等. 核电厂事故机器人应用研究

[J].核安全, 2021, 20(2): 73-78.

- [12] 郭丹丹,刘洁,刘冰.核电厂安全壳内碎片迁移关键问题探讨[J].核安全,2021,20(2):79-84.
- [13] 袁伟,李藐,李霄,等.某型装备典型核事故仿真动态演示 系统的开发及实现[J].核安全,2021,20(2):85-91.
- [14]顾培文,方立凯,王佳赟.基于 CFD 的氢气扩散火焰燃烧 分析[J].核安全,2021,20(2):92-97.
- [15] 冯梅,韦应靖,唐智辉,等.通道式辐射监测仪的能窗法应用研究[J].核安全,2021,20(2):98-105.

- [1]项建英,王进,杨凯,等.EPR首堆机组调试监督及经验浅谈[J].核安全,2021,20(3):1-6.
- [2]高思旖,刘婷,龚宇,等.我国放射性同位素和射线装置监督管理系列法规标准体系现状和建议[J].核安全,2021,20(3);7-11.
- [3]王茂杰,郝丽娜,徐晋,等.核电厂流出物监督性监测实践[J].核安全,2021,20(3):12-16.
- [4] 王天运,王世琦,高缨.环境污染事故放射性气溶胶扩散的 应急控制及消除方法[J].核安全,2021,20(3):17-24.
- [5] 赖立斯,夏星汉,韩良文,等.基于 MCNPX 的 HFETR 典型裂变产物逃脱率系数分析 [J].核安全,2021,20(3): 25-29.
- [6] 沈大伟. 放射性流出物异常类应急行动水平制定与分析 [J]. 核安全, 2021, 20(3): 30-35.
- [7] 刘亚伟,包志彬,张炎,滨海压水堆核电厂冷源安全研究
 [J].核安全,2021,20(3):36-40.
- [8] 杜南麟, 王平春, 梁汉天. 某核电站安全壳内临时通风数值 模拟研究 [J]. 核安全, 2021, 20 (3): 41-45.
- [9] 王臣,张锴,刘畅,等.我国核电厂役前检查异常情况汇总 与典型案例分析[J].核安全,2021,20(3):46-52.
- [10] 杨永灯.核电厂系统设备不可用管理问题分析与改进[J]. 核安全,2021,20(3):53-58.
- [11] 郑军伟,赵东阳,刘东亮.某核电机组汽轮机超速保护控制反复动作原因分析与处理[J].核安全,2021,20(3): 59-64.
- [12] 王进,马成辉,邹青.华南地区核电厂冷源安全保障能力现 状和建议[J].核安全,2021,20(3):65-71.
- [13]包博宇,郝建生,姚琳.乏燃料容器垂直吊具衬套变形事件 分析和设计优化[J].核安全,2021,20(3):72-77.
- [14] 李志刚,韦应靖,张庆利,等.基于蒙特卡罗方法的 HPGe 探测器模型参数优化方法研究 [J].核安全,2021,20(3): 78-85.
- [15] 刘帅, 唐兴龄, 姚琳. 浅析乏燃料转运容器制造过程中的设

计改进[J].核安全, 2021, 20(3): 86-90.

- [16]李炳营,刘烨,黄国庆,等.2MWt 液态燃料钍基熔盐实验 堆仪控系统纵深防御设计与分析 [J].核安全,2021,20
 (3):91-97.
- [17]张鹏,郑兴国,赵幽竹,等.环境地表γ辐射剂量率测量 仪器间比对评价与研究[J].核安全,2021,20(3):98-103.
- [18] 徐学敏.核电厂安全级电气设备热老化试验方法概述解析 [J].核安全,2021,20(3):104-107.
- [19]不忘初心逐梦前行复兴核能创新奉献 ——华中科技大学核 工程与核技术系 [J].核安全, 2021, 20 (3): 108-109.

2021 年第四期

- [1] 熊骁,张根,任丽丽,等.核电厂放射性废物管理路径研究[J].核安全,2021,20(4):1-6.
- [2] 车树伟, 曾珍, 吕云鹤, 等. 核电厂安全重要修改的分类统 计及分析 [J]. 核安全, 2021, 20 (4): 7-11.
- [3] 黄彦君,黄东辉,上官志洪,等.我国核电厂辐射本底调查的标准要求分析[J].核安全,2021,20(4):12-20.
- [4]杨丽丽,郑洁莹,杨岩飞,等.核电建设中常见弄虚作假行为的法律责任分析[J].核安全,2021,20(4):21-26.
- [5] 伞振雷. 某核电站辐射监测系统仪表性能优化 [J]. 核安全, 2021, 20 (4): 27-31.
- [6]何建东,杜东晓,熊文彬,等.非能动核电厂风险指引管理中的风险接受准则研究[J].核安全,2021,20(4): 32-39.
- [7]孙锋,潘蓉,孙造占,等.核电厂海域取水工程抗震分类及 分析方法探讨[J].核安全,2021,20(4):40-44.
- [8] 王臣,刘畅,王玮洁,等.核电厂设备超声检测显示性质判 定准则的对比与分析 [J].核安全,2021,20(4):45-50.
- [9] 梅华平,魏世平,何梅生.聚变堆氚材料衡算测量系统研究 初探[J].核安全,2021,20(4):51-55.
- [10] 李红波,胡攀.核电厂人因事件定义及原因因素分类研究 [J].核安全,2021,20(4):56-60.
- [11]宋慧斌.人因工程人员绩效监督大纲在核电厂的应用概述 [J].核安全,2021,20(4):61-65.
- [12]赵木,范仲,石伯轩,等.核设施退役专业化成套装备研制
 总体考虑[J].核安全,2021,20(4):66-71.
- [13] 杨震,连茜雯,沈钢,等. 气态流出物取样不具代表性的案例浅析 [J]. 核安全, 2021, 20 (4): 72-76.
- [14] 邓云李,韩良文,李子彦,等.HFETR 的老化管理研究与实 践[J].核安全,2021,20(4):77-83.
- [15] 王韶轩, 郭丁情, 李学礼, 等. 动态故障树技术及其在复杂 核能系统概率安全评估中的应用展望[J].核安全, 2021,

20 (4): 84-91.

- [16] 李文蛟. 冬季 SEC 泵备用状态下积气形成机理的理论与模 拟实验研究 [J]. 核安全, 2021, 20 (4): 92-99.
- [17]中国核动力创新发展之路——从第一度核电到"华龙一号" [J].核安全,2021,20(4):100-103.

2021 年第五期

- [1] 侯癸合,刘桐,刘建,等.某核电基地设备应急抢修人力管
 理现状和风险分析[J].核安全,2021,20(5):1-8.
- [2] 刘畅,王娟,刘建华,等.湖北省伴生放射性矿开发利用的 放射性水平调查与评价[J].核安全,2021,20(5):9-15.
- [3] 童一周, 徐俊龙, 崔毅. 基于模糊层次分析法的核安全设 备持证单位量化评价研究[J]. 核安全, 2021, 20(5): 16-20.
- [4]杨安义, 邹宇飞.浅谈设计基准威胁[J].核安全, 2021, 20(5): 21-26.
- [5]郑丽馨,陶书生,王倩,等.核电厂运行事件报告准则研究及应用[J].核安全,2021,20(5):27-33.
- [6]毛位新,王磊,林明娟,等.防城港核电厂外围环境气溶胶中γ核素放射性状况及趋势[J].核安全,2021,20(5): 34-38.
- [7]高鹏,黄微,胡翔,等.浅议橡塑制品中的辐射安全问题[J].核安全,2021,20(5):39-42.
- [8] 阳小华,刘征海,曾铁军,等.基于自主安全智能的放射性物质信息物理融合安防系统[J].核安全,2021,20(5):43-48.
- [9]何先华,王爱玲,张羽.以"绩效改进"为特征的核电厂
 一体化安全管理体系的建立[J].核安全,2021,20(5):
 49-55.
- [10] 孙海涛,吕云鹤,王逊,等.中美核电厂运行许可证延续监管分析与建议[J].核安全,2021,20(5):56-60.
- [11] 郭丹丹,向文娟,王高阳.核电厂安全壳喷射碎片问题研究[J].核安全,2021,20(5):61-65.
- [12] 吴利杰,吴其尧,马若群,等.核电厂国产化核级仪表卡 套接头低温渗碳装置研究[J].核安全,2021,20(5): 66-72.
- [13] 杨文,陈艳芳,巢飞,等.海洋核动力平台装卸料过程辐射后果评价研究[J].核安全,2021,20(5):73-80.
- [14]姚伟达,矫明,林绍萱,等.关于流弹性失稳激励机理中容易混淆问题的解析[J].核安全,2021,20(5):81-87.
- [15]周建明,彭祥阳,路广遥,等.反应堆压力容器主螺栓孔定位和寻迹技术研究[J].核安全,2021,20(5):88-92.
- [16] 马若群,王臣,盛朝阳,等.核电厂蒸汽发生器老化管理分析研究[J].核安全,2021,20(5):93-99.

- [17]于家欢,王海峰,张晓峰.核电厂场外应急洗消站选址方法 与建设规范研究[J].核安全,2021,20(5):100-106.
- [18] 韩勃,雍诺,夏冬琴,等.心理距离对核电风险认知的影响研究[J].核安全,2021,20(5):107-113.

2021 年第六期

- [1] 吕云鹤,初起宝,王臣,等.核电厂老化管理审查方法分析与研究[J].核安全,2021,20(6):1-7.
- [2] 徐同喜, 王威, 中国实验快堆首炉燃料和控制棒组件继续运 行审评实践 [J]. 核安全, 2021, 20(6): 8-11.
- [3] 孟令飞,刘沧,杨飞莹,等.基于梯度上升算法的丢失放射 源搜寻方法 [J].核安全,2021,20(6):12-16.
- [4]徐宇,张敏,盛朝阳,等.压水堆核电站高能管道破裂动态 效应消除方法及应用[J].核安全,2021,20(6):17-23.
- [5] 许友龙,刘莞,郑丽馨.关于我国 M310 及其改进型核电机
 组的应急柴油发电机抗震性能不足问题的分析 [J].核安全,
 2021,20(6):24-29.
- [6]余毅,张敬,孙兴见.核电厂控制系统软件共因故障应对及 评价[J].核安全,2021,20(6):30-35.
- [7] 俞雅静,郭景远,余慧平.某三代核电厂首堆安全管理实践 探讨[J].核安全,2021,20(6):36-42.
- [8] 赵雷. 核燃料循环设施构筑物相关核安全标准的研究与建议 [J]. 核安全, 2021, 20(6): 43-47.
- [9] 车皓, 韩建伟, 乔睿. 智能配电系统在核燃料后处理厂中的 应用[J]. 核安全, 2021, 20(6): 48-55.
- [10]高超,杨广宇,蒋林中,等.核电厂开式循环冷却水系统机 械老化管理应用[J].核安全,2021,20(6):56-61.
- [11] 梅华平,陈超,张思纬,等.商业核电站产氚概念设计及安 全影响评价[J].核安全,2021,20(6):62-67.
- [12] 孙超杰,刘长亮,朱京梅,等.非能动安全壳空气冷却系统 换热影响因素研究[J].核安全,2021,20(6):68-72.
- [13]杨江,罗汉炎,刘仲昊,等.基于不确定分析的 CPR1000 核电厂大破口事故研究[J].核安全,2021,20(6): 73-79.
- [14] 张萌, 张志刚.后福岛时代我国公众对核电发展支持度的研究[J].核安全, 2021, 20(6): 80-87.
- [15]李彪,郭明,吴飞.基于 PLOAS 方法的安全性评估及其发展历程 [J].核安全,2021,20(6):88-93.
- [16] 李淑庆, 苟渊, 王丽娜, 等. 核电维修与技术服务企业核 安全文化建设的探索与实践 [J]. 核安全, 2021, 20 (6): 94-97.
- [17] 杨永灯.严重事故缓解系统薄弱环节分析与对策 [J]. 核安 全, 2021, 20(6): 98-102.
- [18] 邢晓峰,张正楼,汤建明,等.核电厂冷源取水海洋生物堵

塞问题探析 [J]. 核安全, 2021, 20 (6): 103-109.

[19] 王逊,黄力,李小丁,等.突发公共事件视角下对核事故 应急管理问题的探讨和建议[J].核安全,2021,20(6): 110-113.

2022 年第一期

- [1]于嵘,黄美琴,姚宗林,等.省级核安全"十四五"规划编制思路与重点工作研究——以广西为例[J].核安全,2022,21(1):1-6.
- [2] 陈爽,何庆驹,周强.基于 MC 方法的高放废液玻璃固化厂
 屏蔽窗辐射屏蔽性能设计研究 [J].核安全,2022,21(1); 7-12.
- [3] 李烨,赵厚钦.核电厂主泵专用变压器1级能效限值推算[J].核安全,2022,21(1):13-18.
- [4]张蔚华,张一民,郭海峰,等.运行核电厂放射性固体废物
 管理实践与探讨1[J].核安全,2022,21(1):19-25.
- [5]郑海龙,宋光耀,田士蒙.某核电厂主泵变频器故障分析与 可靠性提升1[J].核安全,2022,21(1):26-30.
- [6]李敏,于成波,廖路,等.反应堆中心孔道辐照材料的中子
 与 γ 释热研究 [J].核安全,2022,21 (1):31-35.
- [7] 杨文,姚世卫,邰云,等.基于 MCNP 程序的海洋核动力平 台堆芯核设计校核计算研究 1 [J].核安全,2022,21 (1): 36-41.
- [8] 杨震,连茜雯,杨掌众,等.关于贫化铀容器露天存放的安 全分析[J].核安全,2022,21(1):42-50.
- [9] 甘学英,徐春艳,张宇,等.废树脂热态压实废物包自辐照 产气的初步计算分析 [J].核安全,2022,21 (1):51-58.
- [10] 何燕玲,夏冬琴,雍诺.信源可信度对核电公众接受影响的 研究[J].核安全,2022,21(1):59-68.
- [11] 李薇, 施建锋, 秦玉龙, 等. CAP1400 控制棒提升极限分析 方法研究 [J]. 核安全, 2022, 21 (1): 69-74.
- [12]刘建昌,陈忆晨,余剑,等.华龙一号失水事故后安全壳内气溶胶自然沉降现象研究[J].核安全,2022,21(1):75-81.
- [13] 许友龙,刘莞,郑丽馨.浅谈我国核电厂重要厂用水系统 换热器隔离阀门与放射性监测仪表配置优化[J].核安全, 2022,21(1):82-88.
- [14] 卢洋,许俊俊,刘治刚. 群厂核安全监督数据治理研究 [J].
 核安全,2022,21(1):89-92.
- [15]姚彦贵,熊珍琴,唐力晨,等.抗震分析中关于反应谱与功率谱密度函数之间关系的解析[J].核安全,2022,21(1):93-103.
- [16] 张根,熊骁,任丽丽,等.核电厂放射性废物管理策略研究[J].核安全,2022,21(1):104-111.

2022 年第二期

- [1]杨震,连茜雯,杨掌众,等.铀浓缩厂事故安全监管分析[J].核安全,2022,21(2):1-7.
- [2]黄力,刘婷,常猛,等.浅析核安全责任主体的几个问题[J].核安全,2022,21(2):8-13.
- [3] 吴利杰,李文宏,曾珍,等.核电厂核级金属石墨密封垫片
 国产化替代核安全审查要点[J].核安全,2022,21(2):
 14-19.
- [4]朱毅.上海市高风险移动放射源在线监控系统设计及应用[J].核安全, 2022, 21 (2): 20-25.
- [5]梁任,李润骋,魏来,等.台山核电厂一号机组部分冷却首 堆试验与理论预测分析比较[J].核安全,2022,21(2): 26-31.
- [6] 林燕, 罗汉炎, 李强, 等. ACPR1000 热态满功率 MSLB 事故分析 [J]. 核安全, 2022, 21 (2): 32-37.
- [7]刘建昌,陈韵茵,陈忆晨,等.华龙一号蒸汽发生器传热管
 6 mm 破口事故放射性后果分析 [J].核安全,2022,21(2): 38-42.
- [8] 王常明. 重水堆核电厂压力管泄漏的识别与处理[J]. 核安 全, 2022, 21 (2): 43-50.
- [9] 王海霞,曾正魁,张思纬,等.固态陶瓷氚增殖剂释氚实验
 研究综述 [J].核安全,2022,21 (2):51-61.
- [10] 徐苗苗,乐志东,林支康,等.蒸汽发生器传热管破裂事故缓解措施研究[J].核安全,2022,21(2):62-67.
- [11]刘姚锋.核电厂观察指导数据趋势分析方法研究[J].核安 全,2022,21(2):68-75.
- [12] 于洋,李源,吴静,等.高温气冷堆核电厂事故规程体系分析[J].核安全,2022,21(2):76-83.
- [13]常腾宇,张玮.核安全文化建设示范基地浅析和思考[J]. 核安全,2022,21(2):84-89.

2022 年第三期

- [1] 程丰民, 于现臣, 刘卫东, 等, 一起绝-137 放射源失控事故
 应急监测探讨[J].核安全, 2022, 21 (3): 1-7.
- [2]朱伟杰,王常明,沈国章,等.新建核电站项目前期的证照
 申请与核安全监管浅析[J].核安全,2022,21(3):8-14.
- [3]董良,卢桂才,周天荣,等.宁夏铱-192放射源辐射事故调
 查及分析[J].核安全,2022,21(3):15-19.
- [4]梁锦,邓飞,余慧婷,等.广东放射治疗辐射安全现状[J].
 核安全,2022,21(3):20-24.
- [5]杨震.铀浓缩厂级联系统核安全分析[J].核安全,2022, 21(3):25-32.
- [6]杨少锋,阮晨杰,徐维,等.基于阳江核电厂水母暴发期

间增设水母网效果的研究 [J]. 核安全, 2022, 21 (3): 33-37.

- [7]于洋,郑丽馨,于海洋,等.高温气冷堆核电厂运行事件准则分析[J].核安全,2022,21(3):38-45.
- [8] 臧小为, YARMOLENKO M.A., KOROLEVA M.YU.. 俄罗斯 核电站运行事件及原因分析 [J]. 核安全, 2022, 21 (3); 46-56.
- [9]高炳焱."培养理论"和"文化折扣"视角下的核安全文化落 地与传播体系构建[J].核安全,2022,21(3):57-61.
- [10] 化新超,李星星,潘良明.基于分离式热管构成的非能动安 全壳冷却系统传热性能影响因素研究[J].核安全,2022, 21(3):62-69.
- [11] 彭思桐, 吕云鹤, 曾珍, 等. 基于卧式蒸汽发生器传热管涡 流检查数据的堵管准则研究 [J]. 核安全, 2022, 21 (3): 70-76.
- [12]徐维,阮晨杰,杨少锋,等.基于阳江核电厂冷源拦截网兜 材料替换可行性研究[J].核安全,2022,21(3):77-83.
- [13] 郭强,孙婧,刘卓,等.新型堆芯捕集器竖直冷却管内间歇 沸腾现象研究[J].核安全,2022,21(3):84-92.
- [14] 洪宁宁,刘旌平,张洪宇.基于多重参数综合监测方法的核
 电厂电缆非金属材料一致性研究 [J].核安全,2022,21
 (3):93-98.
- [15] 张亚平,李国健,李锴,等. VVER 机组反应堆压力容器中 子输运计算程序系统的验证 [J]. 核安全, 2022, 21 (3): 99-106.

2022 年第四期

- [1] 刘玮,韩善彪,张伟,等.关于加强我国碘化钠伽玛谱仪技术发展的思考[J].核安全,2022,21(4):1-5.
- [2] 邢继, 吴楠, 薛娜, 等."华龙一号"场外应急优化研究 [J].核安全, 2022, 21 (4): 6-11.
- [3]于大鹏,梁晔,徐晓娟,等.我国核与辐射安全现状研究与 探讨[J].核安全,2022,21(4):12-18.
- [4]曾铁军,阳小华,万亚平,等.新型放射性物品运输安保
 系统及其非法移动感知方法[J].核安全,2022,21(4):
 19-25.
- [5] 张萌, 张志刚. COP 26 减碳目标下核电发展的必要性与可行 性研究 [J]. 核安全, 2022, 21 (4): 26-31.
- [6] 万芹方,李昀,李飞,等.研究堆老化管理监管现状和相关 建议[J].核安全,2022,21(4):32-35.
- [7]黄平,段兴彪,周鹏,等.CPR1000核电机组 RPV 辐照监督
 管提取方案及实践[J].核安全,2022,21(4):36-41.
- [8] 王小信. HPR1000 主控室空调系统防止流感病毒传播能力提 升研究 [J]. 核安全, 2022, 21 (4): 42-47.

- [9] 王雁启,杨雪,李巨峰,等.对核电厂质量保证监查的改进 建议[J].核安全,2022,21(4):48-54.
- [10] 冯丙辰, 王晗丁, 张晓明. 超强台风情况下 SER 水罐安全 影响分析 [J]. 核安全, 2022, 21 (4): 55-58.
- [11] 徐东林,姚守忠,王生吉.乏燃料后处理工程关键技术元素 识别方法研究[J].核安全,2022,21(4):59-65.
- [12] 刘宇生,王庶光,李东阳,等.堆芯补水箱内热工水力现象 识别与研究[J].核安全,2022,21(4):66-73.
- [13] 杜南麟, 张松.系统化培训方法(SAT)在核电厂岗位培 训大纲开发中的应用研究[J].核安全, 2022, 21(4): 74-79.
- [14] 张毅. 当追求卓越成为内生动力 [J]. 核安全, 2022, 21 (4): 80-83.
- [15]周涛,张彪,张雨飞.前进中的东南大学核科学与技术系 [J].核安全,2022,21(4):84-87.

2022 年第五期

- [1]刘玮,李飞,张伟,等.关于我国无人系统辐射环境监测技术发展的思考[J].核安全,2022,21(5):1-6.
- [2]张伟珠,林淑倩,孔杜娟,等.热释光累积剂量环境监测结果影响因素分析[J].核安全,2022,21(5):7-13.
- [3] 曾宇峰, 滕柯延, 杨洪生, 等. 蒙特卡洛方法在紧凑式水泥 固化装置屏蔽设计中的应用[J]. 核安全, 2022, 21 (5): 14-20.
- [4] 毛位新,蒙美福,傅煌辉,等.核应急指挥系统在核事故应急 演习中的应用与思考[J].核安全,2022,21(5):21-27.
- [5]张红涛,汤冠军,孔亮,等.我国关停铀矿冶设施辐射环境 监测状况及对策探讨[J].核安全,2022,21(5):28-32.
- [6] 刘建昌,陈韵茵,欧阳勇,等.压水堆 LOCA 源项分析方法 保守性评价 [J].核安全,2022,21 (5):33-40.
- [7]朱伟,侯秦脉,蔡宁.华龙一号调试试验项目完整性的研究
 [J].核安全,2022,21(5):41-45.
- [8] 冉文王,方亮,吕炜枫,等.英国通用设计审查辐射防护监 管体系研究与实践[J].核安全,2022,21(5):46-53.
- [9] 刘明海,徐志燕,安桂秀. 气溶胶中总α、总β放射性测量 方法探索[J]. 核安全, 2022, 21 (5): 54-58.
- [10]刘时贤, 侯秦脉, 褚倩倩, 等. 基于故障树分析法的乏燃 料水池失去冷却事件分析 [J]. 核安全, 2022, 21 (5): 59-65.
- [11] 曾珍,房永刚.关于建立我国反应堆压力容器辐照监督数据 库的建议[J].核安全,2022,21(5):66-71.
- [12] 韩锦程,王海霞,李桃生,等.基于 COMSOL 的 CFETR TEP 手套箱内氚输运模拟研究 [J].核安全,2022,21(5): 72-80.

- [13]苏康,黎知行,史骥,等.基于启发式算法的乏燃料装料排 期计划研究[J].核安全,2022,21(5):81-87.
- [14]张华,陈志东,徐润龙,等.环境γ辐射剂量率比对及宇宙射线响应测量结果与分析[J].核安全,2022,21(5): 88-94.
- [15] 张子睿. 核电设备采购管理初探 [J]. 核安全, 2022, 21 (5): 95-101.
- [16] 陆宏,陈芳雷,王烁,等.基于核设施实物保护的风险分析 及评估方法研究[J].核安全,2022,21(5):102-110.
- [17] 陈芳雷, 陆宏, 陈晨, 等. 基于核安保事件的模型分析及评 估方法研究 [J]. 核安全, 2022, 21 (5): 111-120.

2022 年第六期

- [1]张蔚华,赵坤,郭海峰,等.浅谈运行核电厂放射性物品运输活动监管[J].核安全,2022,21(6):1-5.
- [2]苏超丽,陈跃光,张金帆,等.广东省5G通信基站电磁辐射
 环境影响监测与管理[J].核安全,2022,21(6):6-12.
- [3] 滕柯延, 曾宇峰, 谢树军, 等. 我国伴生放射性矿废物处置
 现状研究[J]. 核安全, 2022, 21 (6): 13-18.
- [4]张贞.大亚湾核电基地周围海水氚活度浓度的监测概况[J]. 核安全, 2022, 21 (6): 19-24.
- [5] 王宝,蔡金平.福清核电厂放射性流出物排放管理实践[J]. 核安全,2022,21(6):25-29.
- [6] 殷德健, 雷蕾, 邹象.国内外小型模块化反应堆的异同和国际合作前景分析[J].核安全, 2022, 21(6): 30-35.
- [7] 邹象,马国强,雷蕾,等.美国核管会 ITAAC 项目抽样检查 方法的研究 [J].核安全,2022,21 (6):36-41.
- [8] 蔡显岗,张泽宇,张路怀,等.对核电厂环境影响评价相关 问题的探讨[J].核安全,2022,21(6):42-46.
- [9] 陶革,高轩,赵传礼,等.核电厂老化管理大纲及其要素 [J].核安全,2022,21(6):47-54.
- [10] 王逊, 田宇, 荆放, 等. 核动力厂设计扩展工况的思考与建议[J]. 核安全, 2022, 21(6): 55-60.
- [11] 钟华,李晓娟,万亚平,等.高放废物地质处置社会公众可接受性及其风险决策伦理探析[J].核安全,2022,21(6): 61-66.
- [12] 韩良文,赵鹏,邓云李,等.HFETR 设备可靠性数据库的研 究与设计[J].核安全,2022,21(6):67-74.
- [13]赵雷.借鉴区块链技术搭建核电厂厂址安全审评信息平台的 建议[J].核安全,2022,21(6):75-79.
- [14] 赵旭东,杨成,王美英,等.商品级物项转化管理要求研究
 与建议[J].核安全,2022,21(6):80-87.
- [15] 赵永登. 基于区块链技术的核安全管理体系信息化研究 [J]. 核安全, 2022, 21 (6): 88-96.

- [16] 樊亦江, 余大利, 刘书勇, 等, 铅铋冷却燃料棒束堵流事故 CFD 模拟与分析 [J]. 核安全, 2022, 21 (6): 97-105.
- [17]刘时贤,褚倩倩,刘锐,等.应用屏障分析与ECF图对 LNA和LNC变压器供电回路不可用事件分析[J].核安全, 2022,21(6):106-113.

2023年第一期

- [1]陈光荣,位同厦,唐娜,等.电子加速器辐照装置清场巡检
 联锁的优化设计[J].核安全,2023,22(1):1-6.
- [2] 陈晓霞,李伟,白兰.某核电厂建安阶段防异物管理[J]. 核安全,2023,22(1):7-10.
- [3]张军旗,杜俊涛,花锋.华龙一号核电厂辐射监测系统国产 化情况与发展建议[J].核安全,2023,22(1):11-15.
- [4] 毛庆, 方亮.英国核电通用设计审查特色与实践[J].核安 全, 2023, 22 (1): 16-22.
- [5]徐苗苗,林支康,纪文英,等.核电厂事故保护表设计方法研究[J].核安全,2023,22(1):23-29.
- [6] 郭丹丹,向文娟,吴辉平.核电厂破口事故后喷射压力计算 和工况选取研究[J].核安全,2023,22(1):30-35.
- [7] 汪源,张天义,陈杨,等.浅谈回旋加速器退役拆解过程中 实现放射性废物最小化的方法 [J].核安全,2023,22(1): 36-42.
- [8] 王照, 裴亮, 李琼哲. 压力诱发 SGTR 的概率计算方法探讨 [J]. 核安全, 2023, 22 (1): 43-48.
- [9] 许友龙,刘莞,郑丽馨,等.近五年核电厂人因相关运行事件统计分析与建议[J].核安全,2023,22(1):49-54.
- [10] 冯雨, 刘卓, 李云屹, 等. ACP100 非能动安全壳空气冷 却系统换热性能模拟研究 [J]. 核安全, 2023, 22 (1): 55-62.
- [11] 葛帅,孟赛,王瑞楠.一种基于敌手入侵时序图的水域和低空实物保护外部入侵定量评价软件功能模块设计[J].核安全,2023,22(1):63-70.
- [12] 李想,程应冠.关于推进第三代核电严酷工况关键阀门国产化的探索[J].核安全,2023,22(1):71-75.
- [13]张敬,余毅,孙兴见,等.局部区域减薄条件下核级压力容器筒壁安全性分析与评价[J].核安全,2023,22(1):76-80.
- [14] 李静文, 孙国民, 周文, 等. 蒙特卡罗仿真计算前处理平台的开发与初步验证 [J]. 核安全, 2023, 22 (1): 81-88.
- [15] 刘燕芳,李楠,王冬,等.失效分析方法在某核电系统可靠 性工程中的应用[J].核安全,2023,22(1):89-98.
- [16] 陈权,张鑫,高行,等.风险管理在核岛主设备采购中的应 用浅析 [J].核安全,2023,22(1):99-104.

2023 年第二期

- [1]汤日辉.质量保证若干问题的分析和建议[J].核安全, 2023,22(2):1-4.
- [2] 冯云馨,赵玲.概率安全评价在核电厂设计和运行期间的技术特征及应用[J].核安全,2023,22(2):5-12.
- [3]杨亚军, 詹文辉, 胡跃华, 等.国内核电厂丧失厂外电源始发事件频率分析及风险评价[J].核安全, 2023, 22 (2):
 13-18.
- [4] 段宗辉,李延韬,毕斗斗.EPR核电机组核反应堆厂房临时 空调通风系统方案研究应用[J].核安全,2023,22(2): 19-23.
- [5] 吴广君, 李龙. CPR1000 核电机组事故程序融合方法研究 [J]. 核安全, 2023, 22 (2): 24-28.
- [6] 王莹. 俄罗斯核安全监管体系研究及启示 [J]. 核安全, 2023, 22 (2): 29-36.
- [7] 陈甲华, 王平平. 基于文本挖掘的核电厂运行事件致因分析 [J]. 核安全, 2023, 22(2): 37-44.
- [8]甘学英,徐春艳,何玮,等.核电厂废气处理系统双重气体 分析仪设置探讨[J].核安全,2023,22(2):45-51.
- [9] 王钦,马占军,王金成,等.反应堆核热耦合松耦合数值仿 真研究综述 [J].核安全,2023,22(2):52-58.
- [10] 徐玉虎,王玉珍,焦南杰,科研院所可量化安全管理评价体 系的建立及应用 [J].核安全,2023,22(2):59-65.
- [11]姚亦珺,于大鹏,王佳明.模块式小型堆乏燃料水池冷却系
 统设计[J].核安全,2023,22(2):66-73.
- [12]朱雪强, 邹晓春, 郑斌鑫, 等. 海底原位观测技术在核电厂
 取水口安全监测中的应用探讨[J].核安全, 2023, 22(2):
 74-82.
- [13] 陶革.不受环境鉴定要求约束的核电厂低压电缆老化管理 [J].核安全,2023,22(2):83-89.

- [1]丁雪峰,王海鹏,全葳.关于国控大气辐射环境自动监测站 处置的分析和建议[J].核安全,2023,22(3):1-5.
- [2]张学东,曹润丰.核电首台(套)设备推广应用问题分析和 政策研究[J].核安全,2023,22(3):6-15.
- [3] 陈琪,石俊科,郭永贵,等.核工程建造阶段核安全文化体 系建设与管理实践[J].核安全,2023,22(3):16-21.
- [4]余毅,陈日罡,曾斯.核电厂数字化仪控系统软件共因故障 相关核安全标准研究[J].核安全,2023,22(3):22-28.
- [5] 李新贤, 徐维, 杨少锋, 等. 阳江核电厂冷源组合式网兜应 用可行性研究 [J]. 核安全, 2023, 22 (3): 29-34.
- [6] 吴广君. 在运核电厂设计基准定义及其内容技术框架研究

[J].核安全, 2023, 22(3): 35-40.

- [7] 李想,肖会文,邵增,等.Bamboo 程序在方形组件压水堆中的适用性验证研究[J].核安全,2023,22(3):41-47.
- [8] 张军旗,杜俊涛,花锋.核安全辐射监测设备扩证申请的问题探讨[J].核安全,2023,22(3):48-52.
- [9] 王方,师雪艳,任焕文,等.双模式射线融合成像控制系统 的设计与验证[J].核安全,2023,22(3):53-59.
- [10] 王荣东,姚泽文,朴君,等.快堆严重事故钠燃烧过程裂 变产物释放模拟试验研究[J].核安全,2023,22(3): 60-66.
- [11]杨世龙,刘呈则,徐博,等.浅谈首批熔盐堆操纵员的职业 素养[J].核安全,2023,22(3):67-71.
- [12]朱仕斌,艾华宁.摇摆条件下水平圆管内湍流压力脉动特性 分析[J].核安全,2023,22(3):72-80.
- [13] 谭笑, 仇永萍, 卓钰铖, 等. SPAR-H 人员可靠性分析方法 的应用优化研究 [J]. 核安全, 2023, 22 (3): 81-88.
- [14]杨国威,张勇,宋勇,等.半悬臂式燃料元件在间隙限制约
 東下非线性振动的等效方法研究[J].核安全,2023,22
 (3):89-98.

2023 年第四期

- [1] 贠彦祺,周艳芝,张彦炀.关于钇-90 树脂微球核素治疗中的辐射防护研究[J].核安全,2023,22(4):1-6.
- [2] 陶革,赵传礼,高轩,等.核电厂电仪设备的服役环境监测 [J].核安全,2023,22(4):7-13.
- [3] 杜芸,张琴芳.核电厂 SBO 事故小幅功率提升风险响应量化 评估 [J].核安全,2023,22(4):14-21.
- [4] 顾晓慧,李友谊,郎锡野,等.田湾核电站配置风险管理体系[J].核安全,2023,22(4):22-29.
- [5] 甄丽颖,林颖慧,梁国帅,等. 某核电厂放射性流出物及外围环境样品中氚和碳-14的监测[J].核安全,2023,22(4): 30-39.
- [6] 段宗辉,李延韬,王硕,等,穿戴式软质保温在 EPR 核电机组的研究应用[J].核安全,2023,22(4):40-45.
- [7]刘锐,张珊琦,袁芳,等.基于风险指引和性能目标的抗震设计方法在研究堆的应用[J].核安全,2023,22(4):46-53.
- [8] 尹海华,吴群,詹国清,等.受天然放射性核素污染场地土 壤放射性调查工作内容及程序研究[J].核安全,2023,22
 (4):54-59.
- [9] 凡天娣,张勇,杨国威,等.移动式反应堆在不同公路等 级下运输振动响应特性分析[J].核安全,2023,22(4): 60-68.
- [10] 胡洪涛,林雯.实物保护集成管理系统应用与发展[J].核

安全, 2023, 22 (4): 69-74.

- [11] 孔琳,赵旭东,陈明.民用核安全设备焊接人员考核组织管 理研究与建议[J].核安全,2023,22(4):75-80.
- [12] 马亮,王子轩,苑晨亮,等.核设施实物保护系统有效性分析方法研究[J].核安全,2023,22(4):81-87.
- [13] 潘亚兰,杨政理,史骥,等.乏燃料联运数字化应急演练系统研究与应用[J].核安全,2023,22(4):88-93.
- [14] 于稼驷.β 衰变型自给能堆芯中子探测器灵敏度数学模型[J].核安全, 2023, 22 (4): 94-106.

2023 年第五期

- [1]梁锦,张静,丁智.广东放射诊断辐射安全现状[J].核安
 全,2023,22(5):1-8.
- [2] 宋雁辉,王金凤,马丽,等.云南省核技术利用Ⅳ类、Ⅴ类 放射源现状及存在问题的对策研究[J].核安全,2023,22
 (5):9-14.
- [3]姚志猛.核设施退役项目的去污工艺与技术[J].核安全, 2023,22(5):26-43.
- [4] 王春,王德军,王广金,等.质保分级管理在核电设备供货中的研究及应用[J].核安全,2023,22(5):44-50.
- [5] 曾建国, 叶彤, 刘镇江. 国外核安全研究现状、热点和趋势——基于 CiteSpace 的可视化分析 [J]. 核安全, 2023, 22 (5): 51-61.
- [6] 张恩昊,靖剑平,张春明,等.国内外先进热工水力系统程 序研发进展[J].核安全,2023,22(5):62-71.
- [7]陈家铎,蒋诗平,王琳,等.电子加速器屏蔽设计方法研究 [J].核安全,2023,22(5):72-78.
- [8] 侯钢领,解玉建,吴震,等.以核电站建设为例探讨土木水利专业人才培养模式[J].核安全,2023,22(5):79-83.
- [9]苏夏,崔满满,程会方.核电站乏燃料池虹吸破坏效应实验研究[J].核安全,2023,22(5):84-89.
- [10]长孙欣政,董辰.基于指数分布寿命试验区间估计的核电厂 设备可靠性研究[J].核安全,2023,22(5):90-94.
- [11]李晨,黄波,信敬平,等.预时效对高载热中子靶用CuCrZr合金导热与力学性能影响研究[J].核安全,2023,22(5):95-101.
- [12]杨悦.核电设备监造人员的资格认定依据与方法探究[J]. 核安全,2023,22(5):102-106.

2023 年第六期

- [1] 殷德健,张泽宇,齐媛.浅论安全文化与错误文化的异同[J].核安全,2023,22(6):1-11.
- [2]侯春林,初起宝,马若群,等.关于《核动力厂老化管理》导则的修订建议和思考[J].核安全,2023,22(6):12-17.

- [3]郭英来,吴春元,王虎,等.田湾核电站2004-2022年环境 γ辐射剂量率连续监测分析[J].核安全,2023,22(6): 18-22.
- [4] 雷世和. VVER 反应堆压力容器主螺栓卡涩问题分析与处理 [J]. 核安全, 2023, 22(6): 23-29.
- [5]刘建昌,王伟伟,曹志伟,等.横摇条件下海上小型堆完全 丧失交流电事故分析[J].核安全,2023,22(6):30-38.
- [6] 吴敏, 苏海北. 基于 WMS 系统的核电厂工具管理系统开发 及应用 [J]. 核安全, 2023, 22 (6): 39-44.
- [7]金望明,姜鑫,张维.防人因失误工具在核电技术服务单位 中的应用探索[J].核安全,2023,22(6):45-49.
- [8] 夏科英,戴家铖,任蓉.海滨砂选矿项目辐射环境影响评价 专篇技术评估重点内容探讨[J].核安全,2023,22(6): 50-56.
- [9]李肖宇,廖彬荣,耿鹏程,等.核电厂蒸汽发生器液位控制
 系统模拟与优化控制平台设计[J].核安全,2023,22(6):
 57-64.

- [10] 李壮, 孙国民, 杨子辉, 等. 基于多重网格的多物理耦合程 序开发与验证 [J]. 核安全, 2023, 22 (6): 65-72.
- [11]刘锐,孙树海,刘宇生,等.美国小型模块化压水堆堆内 构件流致振动分析方法研究[J].核安全,2023,22(6): 73-79.
- [12] 尹泓卜, 胡述伟, 黄莫一杰, 等. 耐事故燃料包壳材料 FeCrAl 合金耐腐蚀性能研究 [J]. 核安全, 2023, 22 (6): 80-86.
- [13] 尹璟,王凌.游泳池式轻水反应堆一回路水质监测技术及水质控制[J].核安全,2023,22(6):87-92.
- [14] 张文芊,吴连生,黄苗,等.全国41家实验室间水中总
 α、总β放射性测量比对评价与分析[J].核安全,2023,
 22(6):93-100.
- [15] 雍诺, 夏冬琴, 王飞鹏, 等. 多机组核电厂机组间协作行 为对组织可靠性的影响分析 [J]. 核安全, 2023, 22 (6): 101-110.

总体国家安全观

以人民安全为宗旨、以政治安全为根本、以经济安全为基础 以军事科技文化社会安全为保障、以促进国际安全为依托

基层基础

蚁節安全格局保障 *範发展後後後*

0000

理性、协调、并进的核安全观

中华人民共和国生态环境部